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TOWARDS THE CARPENTER’S THEOREM

MARTÍN ARGERAMI AND PEDRO MASSEY

(Communicated by Marius Junge)

Abstract. Let M be a II1 factor with trace τ , A ⊆ M a masa and EA the
unique conditional expectation onto A. Under some technical assumptions on
the inclusion A ⊆ M, which hold true for any semiregular masa of a separable
factor, we show that for elements a in certain dense families of the positive
part of the unit ball of A, it is possible to find a projection p ∈ M such that
EA(p) = a. This shows a new family of instances of a conjecture by Kadison,
the so-called “carpenter’s theorem”.

1. Introduction

As is well-known, the Pythagorean Theorem (PT) states that the square of the
norm of the sum of two orthogonal vectors is equal to the sum of the squares of the
norms of each vector. A converse of the theorem would be the statement that if
such an equality occurs, then the two vectors were orthogonal to begin with. Such
a result allows a carpenter to check his right-angles by just measuring length, so
that’s why PT’s converse is called the “carpenter’s theorem” (CT) by Kadison. In
his work [4, 5], he considers extensions of PT and its corresponding converses CT
to infinite dimension, getting to the unexpected and striking Theorem 15 in [5]
(extended by Arveson in [2]). These generalizations of PT and CT are carried in
[4] to the realm of II1 factors, where the PT basically becomes tautological, and
the CT becomes the following:

Conjecture (Kadison’s carpenter’s theorem). Let A be a masa of the II1 factor
M and let a ∈ A+

1 . Then there exists a projection p ∈ P(M) such that EA(p) = a,
where EA denotes the trace-preserving conditional expectation onto A.

In the finite dimensional case, the CT is a particular case of the well-known
Schur-Horn theorem. Whether the Schur-Horn theorem extends or not to II1 factors
is unknown at the moment (see [1, 3]). In this paper we focus on the CT in II1
factors. Assuming some restrictions on the factor and the masa, which hold true
for semiregular masas in separable II1 factors, we show that the statement holds
for various dense families. It is worth mentioning here that the statement of the
CT (and also of Schur-Horn) is only meaningful in the case of masas, for this would
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3680 MARTÍN ARGERAMI AND PEDRO MASSEY

imply the result for any other abelian subalgebra, and also because both statements
are likely to fail when the subalgebra considered is not abelian: indeed, CT does
not hold for non-abelian subalgebras of Mn(C), and so neither does Schur-Horn.

Although our results fail to settle the CT conjecture in full generality, our meth-
ods lead us to consider a possible strategy for obtaining the CT under the conditions
we consider for the inclusion A ⊆ M, as explained at the end of the paper. It is
worth noting that these technical conditions hold true for inclusions A ⊆ M, where
A is semiregular.

2. Preliminaries

Throughout the paper M denotes a II1 factor with normalized faithful normal
trace τ . We denote by Msa, M+, UM, the sets of selfadjoint, positive, and unitary
elements of M. By P(M) we mean the set of projections of M. Given a ∈ Msa we
denote its spectral measure by pa; thus, pa(∆) is the spectral projection associated
with a Borel set ∆ ⊂ R. The characteristic function of the set ∆ is denoted by
χ∆ and its Lebesgue measure by m(∆). The unitary orbit of a ∈ Msa is the set
UM(a) = {uau∗ : u ∈ UM}.

In [4], Kadison conjectured that if A ⊆ M is a masa and a ∈ A+
1 i.e., a ∈ A+

and 0 ≤ a ≤ 1, then there exists a projection p ∈ P(M) such that EA(p) = a. This
conjecture is equivalent to the following assertion: for p ∈ P(M), a ∈ A,

(1) 0 ≤ a ≤ 1, τ (a) = τ (p) ⇔ a ∈ EA(UM(p)).

Using (1) it can be shown that Kadison’s conjecture is a particular case of a
more general conjecture (a Schur-Horn theorem in II1 factors), which was stated as
an open problem by Arveson and Kadison in [3]. In [1] we proved a weaker version
of Arveson-Kadison’s conjecture, which restricted to the situation in (1) is

Theorem 2.1. Let A ⊆ M, a ∈ A, p ∈ P(M). Then

0 ≤ a ≤ 1, τ (a) = τ (p) ⇔ a ∈ EA(UM(p))
sot
.

Note that in (1) the unitary orbit of the projection is already strongly closed
(and so norm-closed, too), but the statement in Theorem 2.1 is weaker because it
is not clear whether the set on the right-hand side of (1) is already closed in the
strong operator topology (a fact that is actually equivalent to Kadison’s conjecture
by Theorem 2.1).

Matrix units. Given a masa A in M, we denote by NA the normalizer of A in
M, i.e. the subgroup of UM given by

NA = {u ∈ UM : u∗Au = A}.

The masa A is said to be semiregular if (NA)
′′ is a factor, and regular (or Cartan)

if (NA)
′′ = M. Popa shows in [6, Proposition 3.6] that any semiregular masa in a

separable type II factor is Cartan in a hyperfinite subfactor. His result implies the
following:

Proposition 2.2. If A ⊂ M is a semiregular masa in the separable II1 factor M,

then for every k ∈ N there exists {uk
i }2

k

i=1 ⊂ NA and {pki }2
k

i=1 ⊂ P(A) such that
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{vkij}ij , where vkij = uk
i p

k
1(u

k
j )

∗, is a 2k-system of matrix units with vkjj = pkj ∈ P(A)

for j = 1, . . . , 2k and such that

(2) vk+1
2i−1,2j−1 + vk+1

2i,2j = vkij , 1 ≤ i, j ≤ 2k,

and such that the family {pkj } generates all of A.

Matrix units can always be constructed in a II1 factor, but the result in Propo-
sition 2.2 allows one to make “coherent embeddings”, in a sense made precise in
Corollary 2.3.

We denote by D(n) the diagonal subalgebra of Mn(C) and by ED(n) : Mn(C) →
D(n) the diagonal compression. We also consider φk : M2k(C) → M2k+1(C) to be
the unital *-monomorphism φk(A) = I2⊗A. Denote by {ekij} the canonical matrix
units in M2k(C).

Corollary 2.3. Let {pkj }, {vkij} be as in Proposition 2.2. Define a family of ∗-
monomorphisms πk : M2k(C) → M in the following way: for a = (aij) ∈ M2k(C),
let

πk(a) =
∑
i,j

aijv
k
ij .

Then πk(e
k
ii) = pki for i = 1, . . . , 2k, and πk = πk+1 ◦ φk, πk ◦ ED(2k) = EA ◦ πk,

k ∈ N.

For every k ∈ N let {Iki }2
k

i=1 denote the dyadic partition of [0, 1] given by Iki =
[(i− 1)2−k, i 2−k).

Remark 2.4. To each family { {pki }2
k

i=1 : k ∈ N} ⊆ A as in Proposition 2.2 we
associate an operator x in the following way. It is easy to see that the sequence of

(discrete) positive operators xk =
∑2k

i=1
i
2k

pki ∈ A+ is non-increasing and bounded.

Let x = limSOT xk ∈ A+. Then, for every k ∈ N and 0 ≤ i ≤ 2k, px(Iki ) = pki .
In particular, τ ◦ px is the Lebesgue measure restricted to [0, 1]. We say that x
is the associated operator to the family {pki }. Notice that the von Neumann
subalgebra generated by x coincides with A, since the projections pkj are Borel
functional calculus of x ∈ A.

3. Main results

Two subalgebras A,B ⊂ M are said to be orthogonal [7] in M if EA(B) ⊂ C I.

Definition 3.1. We say that a masa A ⊂ M is totally complementable if
for every projection p ∈ A, the masa pA in pMp admits a diffuse orthogonal
subalgebra.

In what follows we shall say that a ∈ M+ is discrete if there exists a sequence
of mutually orthogonal projections {qk}k∈N ⊂ M and a sequence of uniformly
bounded complex numbers {αk}k∈N such that a =

∑
k αk qk (where the convergence

is in the ‖ · ‖1-norm). Note that we can always assume that αk �= αj if k �= j.

Theorem 3.2 (Carpenter’s theorem for discrete operators). If A is a totally com-
plementable masa in the II1 factor M, then for every discrete a ∈ (A)+1 there exists
a projection p ∈ M such that EA(p) = a.
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Proof. Assume B ⊂ M is a subalgebra orthogonal to A. For any α ∈ [0, 1], there
exists a projection q ∈ B with τ (q) = α. Since A and B are orthogonal, EA(q) =
τ (EA(q)) = τ (q) = α.

Now let p ∈ A be a projection; then pA is a masa in pMp, so it admits an
orthogonal subalgebra Bp. By the first paragraph, there exists a projection q ∈
Bp ⊂ pMp with EpA(q) = α p. Since q ∈ pMp, in particular q = pq. So

EA(q) = EA(pq) = pEA(q) = EpA(q) = αp.

Now let a =
∑

k αk pk ∈ A, where {pk}k∈N is a sequence of mutually orthogonal
projections in M and {αk}k∈N is a sequence of uniformly bounded numbers such
that αk �= αj for k �= j. Since a ∈ (A)+1 , for each k ∈ N we have that pk ∈ A (since
we can recover these projections as Borel functional calculus of a) and 0 ≤ αk ≤ 1.
For each k ∈ N apply the first part of the proof to get a projection qk ∈ M+ such
that EA(qk) = αk pk, qk ≤ pk. Thus, the operator q =

∑
k qk ∈ M is a projection

such that EA(q) =
∑

k αk pk. �

Remarks 3.3. (i) The conditions in Theorem 3.2 are satisfied by a Cartan
masa of the hyperfinite II1 factor, and so by any semiregular masa in
a separable II1 factor, since it is Cartan in an intermediate hyperfinite
subfactor [6, Proposition 3.6].

(ii) Because in general there is no clear “coherent” way of constructing the
projections qk in the previous proof, we would not expect such an argument
to be useful to prove the general case of the carpenter’s theorem.

(iii) Under the conditions of Theorem 3.2, it follows in particular that there
exists a projection p ∈ A such that

EA(p) =
1√
2
I.

Remarkably, it seems hard to prove even this particular case of Kadison’s
conjecture in the general case of an arbitrary II1 factor and a masa A ⊆ M.

In the remainder of the paper, given a semiregular masa A of the separable II1
factor M, we will prove the carpenter’s theorem for some non-discrete operators,
namely piecewise linear functional calculus of x, the associated operator of a family
of projections considered in Remark 2.4.

We begin by defining the following sequence of unitary matrices (Wn)n:

W1 =

⎛
⎜⎜⎝
1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

⎞
⎟⎟⎠ , Wn+1 = Wn ⊗ I2 =

(
Wn 0
0 Wn

)
=

2n⊕
j=1

W1.

Lemma 3.4. Let A ∈ M2k(C). Put A(1) = A, A(n + 1) = Wk+n−1(I2 ⊗
A(n))W ∗

k+n−1. Then there exists λ < 1, independent of A, k and n such that

1

2
‖A(n+ 1)− I2 ⊗A(n)‖22 ≤ λ ‖A(n)− I2 ⊗A(n− 1)‖22.

Proof. Let k ≥ 1 and n ≥ 2. We can consider A(n−1) as a block matrix with 2×2
blocks, i.e. A(n − 1) = (Aij)ij , where Aij ∈ M2(C) for 1 ≤ i, j ≤ 2(k+n−3). It is
easy to verify that

I2 ⊗A(n− 1) = (I2 ⊗Aij)ij and A(n) = (W1(I2 ⊗Aij)W
∗
1 )ij = (Aij(2))ij.
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So in particular we have that

(3) ‖A(n)− I2 ⊗A(n− 1)‖22 =
2(k+n−3)∑
i, j=1

‖Aij(2)− I2 ⊗Aij‖22.

Similarly we see that A(n+ 1) = (Aij(3))ij , for 1 ≤ i, j ≤ 2k+n−3 and

(4) ‖A(n+ 1)− I2 ⊗A(n)‖22 =

2(k+n−3)∑
i, j=1

‖Aij(3)− I2 ⊗Aij(2)‖22.

So, from (3) and (4) we see that it is enough to prove that there exists 0 < λ < 1
(independent of A, k and n) such that for every 1 ≤ i, j ≤ 2k+n−3,

1

2
‖Aij(3)− I2 ⊗ Aij(2)‖22 ≤ λ ‖Aij(2)− I2 ⊗Aij‖22.

We show that such an inequality holds for any 2 × 2 matrix B = (bij)ij ∈ M2(C).
By straightforward computations,

B(2) = W1 (I2 ⊗ B)W ∗
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11
−b12√

2
b12√
2

0

−b21√
2

b11+b22
2

b11−b22
2

b12√
2

b21√
2

b11−b22
2

b11+b22
2

b12√
2

0 b21√
2

b21√
2

b22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and so

(5) ‖B(2)− I2 ⊗B‖22 = (4− 2
√
2)(|b12|2 + |b21|2) + |b11 − b22|2.

Thus, if we consider B(2) = (Bij)ij as a 2×2 block matrix, where Bij ∈ M2(C),
we can use the previous calculation with each of these four matrices and get

(6)
1

2
‖B(3)− I2 ⊗B(2)‖22 =

1

2
((4− 2

√
2)(|b12|2 + |b21|2) + (

5

2
−
√
2) |b11 − b22|2).

Writing 5
2 −

√
2 = 1 + ( 32 −

√
2) and using (5) and (6) we get that

1

2

‖B(3)− I2 ⊗B(2)‖22
‖W1(I2 ⊗B)W ∗

1 − I2 ×B‖22
≤ 1

2
(1 +

3

2
−
√
2) < 1.

�

In what follows we denote by {fk
i }2

k

i=1 the rank-one projections associated with

the elements of the canonical basis of C2k , that is, fk
i = ekii.

Lemma 3.5. Let n ∈ N and A ∈ M2k(C). Then, with the notation of Lemma 3.4:

(i) ED(2k+n)(A(n+1)) = ED(2k+n)(Wk+n−1 (I2⊗ED(2k+n−1)(A(n)))W ∗
k+n−1).

(ii) If A is diagonal and B = Wk−1AW ∗
k−1, then

Bii =

{
Aii if i = 4h or i = 4h− 3,
1
2 (A4h−1,4h−1 +A4h−2,4h−2) if i = 4h− 1 or i = 4h− 2.
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(iii) If ED(2k)(A) =
∑2k

�=1 d� f
k
� , then

ED(2k+n−1)(A(n)) =

2k−1∑
�=1

2n−1∑
h=1

γn
�,h−1 f

k+n−1
2n(�−1)+2h−1 + γn

�,h f
k+n−1
2n(�−1)+2h

,

where

γn
�,h = d2�−1 +

h

2n−1
(d2� − d2�−1).

Proof. To prove (i) let k, n ≥ 1 and consider the block representations A(n) =

(Aij)
2k+n−2

i,j=1 , where Aij ∈ M2(C). Then I2 ⊗A(n) = (I2 ⊗Aij)
2k+n−2

ij=1 and

A(n+ 1) = Wk+n−1(I2 ⊗A(n))W ∗
k+n−1 = (W1 (I2 ⊗Aij)W

∗
1 )

2k+n−2

ij=1

with respect to the previous block representation. Hence, to study the diagonal of
A(n + 1) we can restrict our attention to the diagonal blocks W1 (I2 ⊗ Aii)W

∗
1 ∈

M4(C), for i = 1, . . . , 2k+n−2. Straightforward computations show that

ED(4)(W1 (I2 ⊗Aii)W
∗
1 ) = ED(4)(W1ED(4)(I2 ⊗Aii)W

∗
1 )

from which (i) follows, after noting that ED(4)(I2 ⊗ B) = I2 ⊗ ED(2)(B) for any
B ∈ M2(C).

The proof of (ii) is straightforward.
We prove (iii) by induction. The case n = 1 follows from the definitions, and

hence we omit it. Now, assume that (iii) holds for A(n). Then

I2 ⊗ ED(2k+n−1)(A(n)) =
2k−1∑
�=1

2n−1∑
h=1

γn
�,h−1 I2 ⊗ fk+n−1

2n(�−1)+2h−1

+ γn
�,h I2 ⊗ fk+n−1

2n(�−1)+2h

=
2k−1∑
�=1

2n−1∑
h=1

γn
�,h−1 (f

k+n
(�−1)2n+1+4h−3 + fk+n

(�−1)2n+1+4h−2)

+ γn
�,h (f

k+n
(�−1)2n+1+4h−1 + fk+n

(�−1)2n+1+4h).

Using (ii) and the relations

γn
�,h = γn+1

�,2h ,
1

2
(γn

�,h−1 + γn
�,h) = γn+1

�,2h−1,

we have
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ED(2k+n)(A(n+ 1)) = ED(2k+n)(Wk+n−1 (I2 ⊗ ED(2k+n−1)(A(n)))W ∗
k+n−1)

=
2k−1∑
�=1

2n−1∑
h=1

γn
�,h−1 f

k+n
(�−1)2n+1+4h−3

+
1

2
(γn

�,h−1 + γn
�,h) f

k+n
(�−1)2n+1+4h−2

+
1

2
(γn

�,h−1 + γn
�,h) f

k+n
(�−1)2n+1+4h−1 + γn

�,h f
k+n
(�−1)2n+1+4h

=

2k−1∑
�=1

2n−1∑
h=1

γn+1
�,2h−2 f

k+n
(�−1)2n+1+4h−3+γn+1

�,2h−1 f
k+n
(�−1)2n+1+4h−2

+ γn+1
�,2h−1 f

k+n
(�−1)2n+1+4h−1 + γn+1

�,2h fk+n
(�−1)2n+1+4h

=

2k−1∑
�=1

2n∑
h=1

γn+1
�,h−1 f

k+n
2n(�−1)+2h−1 + γn+1

�,h fk+n
2n(�−1)+2h.

�
Theorem 3.6 (Carpenter’s theorem for some non-discrete operators). Let M be
a separable II1 factor and let x ∈ A+ be the associated operator to a family {pki }
of projections in a semiregular masa A in M. If A ∈ M2k(C), then the sequence
(an)n∈N ⊆ M given by a1 = πk(A) and

an+1 = πk+n(A(n+ 1)) = πk+n(Wn+k−1) πk+n(A(n)) πk+n(Wn+k−1)
∗

converges strongly to an operator a ∈ M. Moreover, we have that

(i) if A is a projector (resp. selfadjoint, positive), then so is a;
(ii) if Ajj = dj and f : [0, 1] → C is the piecewise linear function given by

f(t) = d2j−1 + 2k−1

(
t− j − 1

2k−1

)
(d2j − d2j−1), t ∈

[
j − 1

2−(k−1)
,

j

2−(k−1)

)
,

j = 1, . . . , 2k−1, then EA(a) = f(x);
(iii) if B ∈ M2k and b = limn πn+k−1(B(n)), then ‖b− a‖22 = 1

2k
‖B −A‖22.

Proof. Using Corollary 2.3, Lemma 3.4 and the fact that if C ∈ M2k(C) then
‖πk+n−1(C)‖22 = 2−(k+n−1) ‖C‖22, we have

‖an+1 − an‖22 ≤ λ ‖an − an−1‖22
with 0 < λ < 1, independent of A, k and n. Then the sequence {an} converges in
‖ · ‖2 to an operator a ∈ M. We now prove the remaining items.

(i) If A is a projector (resp. selfadjoint, positive), then so is A(n), for each n.
Since every πn is a ∗-representation, πn+k−1(A(n)) inherits the properties from A,
and any of the three properties passes to the ‖ · ‖2-limit.

(ii) By Lemmas 2.3 and 3.5,

EA(an) = EA(πk+n−1(A(n))) = πk+n−1(ED(2k+n−1)(A(n)))

=
2k−1∑
�=1

2n−1∑
h=1

γn
�,h−1 p

k+n−1
2n(�−1)+2h−1 + γn

�,h p
k+n−1
2n(�−1)+2h.
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If we consider the discrete operators xn as defined in Remark 2.4, then

xk+n−1 =

2k+n−1∑
i=1

i

2k+n−1
pk+n−1
i

=
2k−1∑
�=1

2n−1∑
h=1

2n(�− 1) + 2h− 1

2k+n−1
pk+n−1
2n(�−1)+2h−1 +

2n(�− 1) + 2h

2k+n−1
pk+n−1
2n(�−1)+2h.

It is easy to check that

�− 1

2k−1
≤ 2n(�− 1) + 2h− 1

2k+n−1
<

2n(�− 1) + 2h

2k+n−1
<

�

2k−1
,

and, if γn
�,h are as in the statement of Lemma 3.5, then

f

(
2n(�− 1) + 2h− 1

2k+n−1

)
= γn

�,h−1 +
1

2n
(d2� − d2�−1),

f

(
2n(�− 1) + 2h

2k+n−1

)
= γn

�,h−1.

So

f(xk+n−1) =

2k−1∑
�=1

2n−1∑
h=1

(
γn
�,h−1 +

1

2n
(d2� − d2�)

)
pk+n−1
2n(�−1)+2h−1

+ γn
�,h−1 p

k+n−1
2n(�−1)+2h

= EA(an) +
2k−1∑
�=1

2n−1∑
h=1

1

2n
(d2� − d2�−1) p

k+n−1
2n(�−1)+2h−1.

Thus, letting d = max{di} ≤ ‖A‖,

‖EA(an)− f(xk+n−1)‖ = ‖
2k−1∑
�=1

2n−1∑
h=1

1

2n
(d2� − d2�−1) p

k+n−1
2n(�−1)+2h−1‖ ≤ d

2n
.

Since an
‖·‖2−−→ a, xn

‖·‖2−−→ x, EA is normal, and f is continuous off a set of Lebesgue

measure 0 (see Remark 2.4), we get EA(an)
‖·‖2−−→ EA(a), f(xn)

‖·‖2−−→ f(x), and so
EA(a) = f(x).

(iii) Note that ‖I2 ⊗A‖22 = 2 ‖A‖22. Then we have

‖πn+k−1(B(n))− πn+k−1(A(n))‖22 =
1

2n+k−1
‖B(n)−A(n)‖22

=
1

2n+k−1
‖Wk+n−2(I2 ⊗ (B(n− 1)−A(n− 1))Wk+n−2‖22

=
1

2n+k−2
‖B(n− 1)−A(n− 1)‖22

...

=
1

2k
‖B −A‖22.

By continuity,

‖b− a‖22 =
1

2k
‖B −A‖22. �
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The continuity property in (iii) suggests a possible strategy for solving Kadi-
son’s conjecture in this setting: using the previous notation, let g(x) ∈ A for

g ∈ L∞([0, 1]), 0 ≤ g ≤ 1, and for k ∈ N, let gk =
∑2k

i=1 gi,k χIk
i
be a sequence of

dyadic discrete functions, 0 ≤ gk ≤ 1,
∫ 1

0
gk(t) dt = 2−km(k) for some m(k) ∈ N

and such that it converges to g in L2([0, 1]). Then, if we were able to construct a
sequence of projection matrices Ak ∈ M2k(C) such that

(7) D2k(Ak) =
2k∑
i=1

gi,k f
k
i and lim sup

k

1

2

‖Ak+1 − I2 ⊗Ak‖22
‖Ak − I2 ⊗Ak−1‖22

< 1,

then, denoting by ak = limn πk+n(Ak), we would have that

ak
‖ ‖2−−→
k

a, EA(ak)
‖ ‖2−−→
k

g(x)

since by (7), {ak}k would be a Cauchy sequence of projections in ‖ · ‖2. Hence a ∈
M+ would be a projection such that EA(a) = g(x) for an arbitrary g ∈ L∞([0, 1]),
0 ≤ g ≤ 1.
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