Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lower bounds for moments of automorphic $ L$-functions over short intervals


Author: Guanghua Ji
Journal: Proc. Amer. Math. Soc. 137 (2009), 3569-3574
MSC (2000): Primary 11F66, 11M26, 11M41
DOI: https://doi.org/10.1090/S0002-9939-09-10012-6
Published electronically: June 15, 2009
MathSciNet review: 2529862
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L(s,\pi)$ be the principal $ L$-function attached to an irreducible unitary cuspidal automorphic representation $ \pi$ of $ GL_m(\mathbb{A}_\mathbb{Q})$. The aim of the paper is to give a simple method to show the lower bounds of mean value for automorphic $ L$-functions over short intervals.


References [Enhancements On Off] (What's this?)

  • 1. J. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith, Integral moments of L-functions, Proc. London Math. Soc., (3) 91 (2005), 33-104. MR 2149530 (2006j:11120)
  • 2. S. Gelbart and F. Shahidi, Boundedness of automorphic $ L$-functions in vertical strips, J. Amer. Math. Soc. 14 (2001), 79-107. MR 1800349 (2003a:11056)
  • 3. R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math. 260, Springer-Verlag, Berlin, 1972. MR 0342495 (49:7241)
  • 4. D. R. Heath-Brown, Fractional moments of the Riemann zeta function, J. London Math. Soc. 24 (1981), No. 1, 65-78. MR 623671 (82h:10052)
  • 5. H. Iwaniec and E. Kowalski, Analytic Number Theorem, Amer. Math. Soc. Colloquium Publ. 53, Amer. Math. Soc., Providence, RI, 2004. MR 2061214 (2005h:11005)
  • 6. H. Jacquet and J. A. Shalika, A non-vanishing theorem for zeta functions of $ GL_n$, Inventiones Math. 38 (1976), 1-16. MR 0432596 (55:5583)
  • 7. J. Liu and Y. Ye, Superposition of zeros of distinct $ L$-functions, Forum Math. 14 (2002), 419-455. MR 1899293 (2003g:11053)
  • 8. W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for $ GL(n)$, in Automorphic forms, automorphic representations and arithmetic, Proc. Symp. Pure Math. 66 (1999), Part 2, Amer. Math. Soc., Providence, RI, 301-310. MR 1703764 (2000e:11072)
  • 9. G. Molteni, Upper and lower bounds at $ s=1$ for certain Dirichlet series with Euler product, Duke Math. J. 111 (2002), 133-158. MR 1876443 (2002m:11084)
  • 10. K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series. I, Hardy-Ramanujan J. 1 (1978), 1-15. MR 565298 (82f:10054a)
  • 11. K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series. II, Hardy-Ramanujan J. 3 (1980), 1-25. MR 577338 (82f:10054b)
  • 12. Z. Rudnick and P. Sarnak, Zeros of principal $ L$-functions and random matrix theory, Duke Math. J. 81 (1996), 269-322. MR 1395406 (97f:11074)
  • 13. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd Edition, The Clarendon Press, Oxford Univ. Press, New York, 1986. MR 882550 (88c:11049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F66, 11M26, 11M41

Retrieve articles in all journals with MSC (2000): 11F66, 11M26, 11M41


Additional Information

Guanghua Ji
Affiliation: Department of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China
Email: ghji@mail.sdu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-09-10012-6
Received by editor(s): October 20, 2008
Published electronically: June 15, 2009
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society