Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A residual radial limit zero set

Author: Michael C. Fulkerson
Journal: Proc. Amer. Math. Soc. 137 (2009), 3725-3731
MSC (2000): Primary 32A40
Published electronically: June 15, 2009
MathSciNet review: 2529880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a nonconstant holomorphic function on the unit ball in $ \mathbb{C}^n$ having radial limit zero on a certain residual subset of the unit sphere.

References [Enhancements On Off] (What's this?)

  • 1. Robert D. Berman, A converse to the Lusin-Privalov radial uniqueness theorem, Proc. Amer. Math. Soc. 87 (1983), no. 1, 103-106. MR 677242 (84m:30048)
  • 2. Monique Hakim and Nessim Sibony, Boundary properties of holomorphic functions in the ball of $ {\bf C}\sp n$, Math. Ann. 276 (1987), no. 4, 549-555. MR 879534 (88c:32008)
  • 3. N. Lusin and J. Priwaloff, Sur l'unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143-191. MR 1509265
  • 4. J. E. McMillan, On radial limits and uniqueness of holomorphic functions, Math. Z. 92 (1966), 321-322. MR 0197736 (33:5899)
  • 5. I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. MR 0083565 (18:727f)
  • 6. Walter Rudin, New constructions of functions holomorphic in the unit ball of $ {\bf C}\sp n$, CBMS Regional Conference Series in Mathematics, vol. 63, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 1986. MR 840468 (87f:32013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32A40

Retrieve articles in all journals with MSC (2000): 32A40

Additional Information

Michael C. Fulkerson
Affiliation: Department of Mathematics, Mailstop 3368, Texas A&M University, College Station, Texas 77843
Address at time of publication: Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma 73034

Received by editor(s): December 23, 2008
Published electronically: June 15, 2009
Additional Notes: This paper is based on part of the author’s 2008 Ph.D. dissertation at Texas A&M University under the direction of Harold P. Boas.
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society