Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Localizable operators and the construction of localized frames


Author: Fumiko Futamura
Journal: Proc. Amer. Math. Soc. 137 (2009), 4187-4197
MSC (2000): Primary 42C15, 46B15, 47B37, 47L80
DOI: https://doi.org/10.1090/S0002-9939-09-09995-X
Published electronically: July 14, 2009
MathSciNet review: 2538579
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of localizable operators with respect to frames and prove the boundedness of such operators on families of Banach spaces. This generalizes previous results for specific operators, such as pseudodifferential operators on modulation spaces. We also use this notion to provide sufficient conditions for the construction of frames which have the localization property.


References [Enhancements On Off] (What's this?)

  • 1. A. Aldroubi, Portraits of frames. Proc. Amer. Math. Soc. 123 (1995), 1661-1668. MR 1242070 (95g:46037)
  • 2. A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43 (2001), no. 4, 585-620. MR 1882684 (2003e:94040)
  • 3. R. Balan, P.G. Casazza, C. Heil, and Z. Landau, Density, overcompleteness, and localization of frames, I. Theory, J. Fourier Anal. Appl. 12 (2006), no. 2, 105-143. MR 2224392 (2007b:42041)
  • 4. R. Balan, P.G. Casazza, C. Heil, and Z. Landau, Density, overcompleteness, and localization of frames, II. Gabor systems, J. Fourier Anal. Appl. 12 (2006), no. 3, 309-344. MR 2235170 (2007b:42042)
  • 5. A.G. Baskakov, Wiener's theorem and asymptotic estimates for elements of inverse matrices (Russian), Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 64-65; translation in Funct. Anal. Appl. 24 (1990), no. 3, 222-224 (1991). MR 1082033 (92g:47049)
  • 6. O. Christensen. An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003. MR 1946982 (2003k:42001)
  • 7. A. Cichocki. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley and Sons, NJ, 2002.
  • 8. R. Coifman and Y. Meyer, Wavelets. Calderón-Zygmund and multilinear operators, Cambridge Studies in Advanced Mathematics, 48, Cambridge Univ. Press, Cambridge, 1997. MR 1456993 (98e:42001)
  • 9. M. Fornasier and K. Gröchenig, Intrinsic localization of frames, Constr. Approx. 22 (2005), no. 3, 395-415. MR 2164142 (2006f:42030)
  • 10. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1991. MR 1107300 (92m:42021)
  • 11. F. Futamura, Banach framed, decay in the context of localization, Sampl. Theory Signal Image Process. 6 (2007), no. 2 , 151-166. MR 2343403 (2008i:42062)
  • 12. F. Futamura, Symmetrically localized frames and the removal of subsets of positive density, J. Math. Anal. Appl. 326 (2007), no. 2, 1225-1235. MR 2280976 (2007k:42093)
  • 13. I. Gohberg, M.A. Kaashoek, and H.J. Woerdeman, The band method for positive and contractive extension problems, J. Operator Theory 22 (1989), 109-155. MR 1026078 (91a:47021)
  • 14. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001. MR 1843717 (2002h:42001)
  • 15. K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10 (2004), no. 2, 105-132. MR 2054304 (2005f:42086)
  • 16. K. Gröchenig, Time-frequency analysis of Sjöstrand's class, Rev. Mat. Iberoamericana 22 (2006), no. 2, 703-724. MR 2294795 (2008b:35308)
  • 17. K. Gröchenig and C. Heil, Modulation spaces as symbol classes for pseudodifferential operators, in: ``Wavelets and Their Applications'' (Chennai, January 2002), M. Krishna, R. Radha and S. Thangavelu, eds., Allied Publishers, New Delhi, 2003, 151-169.
  • 18. R. Rochberg and K. Tachizawa, Pseudodifferential operators, Gabor frames, and local trigonometric bases, in: ``Gabor Analysis and Algorithms: Theory and Applications'', H.G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 1998, 171-192. MR 1601103 (98k:42046)
  • 19. J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles, 1994-1995, Exp. No. IV, École Polytech., Palaiseau, 1995. MR 1362552 (96j:47049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C15, 46B15, 47B37, 47L80

Retrieve articles in all journals with MSC (2000): 42C15, 46B15, 47B37, 47L80


Additional Information

Fumiko Futamura
Affiliation: Department of Mathematics and Computer Science, Southwestern University, Georgetown, Texas 78626
Email: futamurf@southwestern.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09995-X
Keywords: Localized frames, localizable operators, Banach frames
Received by editor(s): January 22, 2009
Received by editor(s) in revised form: April 5, 2009
Published electronically: July 14, 2009
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society