Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Density of mild mixing property for vertical flows of Abelian differentials

Author: Krzysztof Fraczek
Journal: Proc. Amer. Math. Soc. 137 (2009), 4129-4142
MSC (2000): Primary 37A10, 37E35; Secondary 30F30
Published electronically: July 1, 2009
MathSciNet review: 2538574
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ g\geq 2$, then the set of all Abelian differentials $ (M,\omega)$ for which the vertical flow is mildly mixing is dense in every stratum of the moduli space $ \mathcal{H}_g$. The proof is based on a sufficient condition due to Frączek, Lemańczyk, and Lesigne guaranteeing mild mixing property of certain special flows over irrational rotations.

References [Enhancements On Off] (What's this?)

  • 1. A. Avila, G. Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), 637-664. MR 2299743
  • 2. K. Frączek, M. Lemańczyk, On the self-similarity problem for ergodic flows, to appear in Proc. London Math. Soc.; preprint available from $ \sim$fraczek/czasypot2.pdf. doi:10.1112/plms/pdp 013
  • 3. K. Frączek, M. Lemańczyk, E. Lesigne, Mild mixing property for special flows under piecewise constant functions, Discrete Contin. Dyn. Syst. 19 (2007), 691-710. MR 2342268 (2008j:37004)
  • 4. H. Furstenberg, B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math. 668, Springer, Berlin, 1978, 127-132. MR 518553 (80b:28023)
  • 5. A.B. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math. 35 (1980), 301-310. MR 594335 (82e:58060)
  • 6. M. Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31. MR 0357739 (50:10207)
  • 7. S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (2005), 823-872. MR 2163864 (2006f:37006)
  • 8. G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith. 34 (1979), 315-328. MR 543205 (82m:10076)
  • 9. W.A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242. MR 644019 (83g:28036b)
  • 10. W.A. Veech, The metric theory of interval exchange transformations, I. Generic spectral properties, Amer. J. Math. 106 (1984), 1331-1358. MR 765582 (87j:28024a)
  • 11. W.A. Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990), 117-171. MR 1094714 (92e:32014)
  • 12. M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut. 19 (2006), 7-100. MR 2219821 (2007f:37002)
  • 13. M. Viana, Dynamics of Interval Exchange Transformations and Teichmüller Flows, lecture notes available from$ \sim$viana/out/ietf.pdf
  • 14. J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction, Frontiers in number theory, physics, and geometry I, 401-435, Springer, Berlin, 2006. MR 2261103 (2008b:37011)
  • 15. A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry I, 437-583, Springer, Berlin, 2006. MR 2261104 (2007i:37070)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37A10, 37E35, 30F30

Retrieve articles in all journals with MSC (2000): 37A10, 37E35, 30F30

Additional Information

Krzysztof Fraczek
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland – and – Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, 00-956 Warszawa, Poland

Keywords: Mild mixing property, measure--preserving flows, direction flows, Abelian differentials
Received by editor(s): November 19, 2008
Received by editor(s) in revised form: March 19, 2009
Published electronically: July 1, 2009
Additional Notes: This research was partially supported by MNiSzW grant NN201 384834 and the Marie Curie “Transfer of Knowledge” program, project MTKD-CT-2005-030042 (TODEQ)
Communicated by: Bryna Kra
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society