Jet schemes of the commuting matrix pairs scheme

Authors:
B. A. Sethuraman and Klemen Sivic

Journal:
Proc. Amer. Math. Soc. **137** (2009), 3953-3967

MSC (2000):
Primary 14M99

Published electronically:
July 30, 2009

MathSciNet review:
2538555

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for all there exists an integer such that for all the -th order jet scheme over the commuting matrix pairs scheme is reducible.

At the other end of the spectrum, it is known that for all the -th order jet scheme over the commuting matrices is irreducible; we show that the same holds for .

**1.**F. R. Gantmacher,*The theory of matrices. Vols. 1, 2*, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR**0107649****2.**Murray Gerstenhaber,*On dominance and varieties of commuting matrices*, Ann. of Math. (2)**73**(1961), 324–348. MR**0132079****3.**Russell A. Goward Jr. and Karen E. Smith,*The jet scheme of a monomial scheme*, Comm. Algebra**34**(2006), no. 5, 1591–1598. MR**2229478**, 10.1080/00927870500454927**4.**Robert M. Guralnick,*A note on commuting pairs of matrices*, Linear and Multilinear Algebra**31**(1992), no. 1-4, 71–75. MR**1199042**, 10.1080/03081089208818123**5.**Boyan Jonov, Shellability of a complex associated to the first order jet scheme of a determinantal variety, in preparation.**6.**Tomaž Košir and B. A. Sethuraman,*Determinantal varieties over truncated polynomial rings*, J. Pure Appl. Algebra**195**(2005), no. 1, 75–95. MR**2100311**, 10.1016/j.jpaa.2004.06.001**7.**Tomaž Košir and B. A. Sethuraman,*A Groebner basis for the 2×2 determinantal ideal \mod𝑡²*, J. Algebra**292**(2005), no. 1, 138–153. MR**2166800**, 10.1016/j.jalgebra.2004.12.005**8.**Qing Liu,*Algebraic geometry and arithmetic curves*, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR**1917232****9.**Mircea Mustaţă,*Jet schemes of locally complete intersection canonical singularities*, Invent. Math.**145**(2001), no. 3, 397–424. With an appendix by David Eisenbud and Edward Frenkel. MR**1856396**, 10.1007/s002220100152**10.**Mircea Mustaţǎ,*Singularities of pairs via jet schemes*, J. Amer. Math. Soc.**15**(2002), no. 3, 599–615 (electronic). MR**1896234**, 10.1090/S0894-0347-02-00391-0**11.**T. S. Motzkin and Olga Taussky,*Pairs of matrices with property 𝐿. II*, Trans. Amer. Math. Soc.**80**(1955), 387–401. MR**0086781**, 10.1090/S0002-9947-1955-0086781-5**12.**John F. Nash Jr.,*Arc structure of singularities*, Duke Math. J.**81**(1995), no. 1, 31–38 (1996). A celebration of John F. Nash, Jr. MR**1381967**, 10.1215/S0012-7094-95-08103-4**13.**Michael G. Neubauer and David J. Saltman,*Two-generated commutative subalgebras of 𝑀_{𝑛}(𝐹)*, J. Algebra**164**(1994), no. 2, 545–562. MR**1271255**, 10.1006/jabr.1994.1077**14.**Michael G. Neubauer and B. A. Sethuraman,*Commuting pairs in the centralizers of 2-regular matrices*, J. Algebra**214**(1999), no. 1, 174–181. MR**1684884**, 10.1006/jabr.1998.7703**15.**Cornelia Yuen, Jet Schemes and Truncated Wedge Schemes, Ph.D. thesis, University of Michigan (2006).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14M99

Retrieve articles in all journals with MSC (2000): 14M99

Additional Information

**B. A. Sethuraman**

Affiliation:
Department of Mathematics, California State University, Northridge, Northridge, California 91330

Email:
al.sethuraman@csun.edu

**Klemen Sivic**

Affiliation:
Institute of Mathematics, Physics, and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Email:
klemen.sivic@fmf.uni-lj.si

DOI:
http://dx.doi.org/10.1090/S0002-9939-09-10029-1

Received by editor(s):
November 4, 2008

Received by editor(s) in revised form:
February 19, 2009

Published electronically:
July 30, 2009

Additional Notes:
The first author was supported by the National Science Foundation grant DMS-0700904.

The second author was supported by the Slovenian Research Agency.

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.