A WAVELET CHARACTERIZATION
FOR THE DUAL OF WEIGHTED HARDY SPACES

MING-YI LEE, CHIN-CHENG LIN, AND YING-CHIEH LIN

(Communicated by Hart F. Smith)

Abstract. We define the weighted Carleson measure space CMO^p_w using
wavelets, where the weight function w belongs to the Muckenhoupt class. Then
we show that CMO^p_w is the dual space of the weighted Hardy space H^p_w by
using sequence spaces. As an application, we give a wavelet characterization
of BMO_w.

1. Introduction

Meyer [4] described the Hardy space H^1 and BMO via wavelets. He offered several
characterizations of H^1 in terms of its decompositions with respect to wavelet
bases, and characterized BMO in terms of a Carleson condition on wavelet coef-
ficients. A natural extension is to consider their weighted counterparts. In 2001,
Garcia-Cuerva and Martell [2] gave a wavelet characterization of weighted Hardy
spaces $H^p_w(\mathbb{R})$, $0 < p \leq 1$. In this article, we give a wavelet characterization for the
dual of $H^p_w(\mathbb{R})$, $0 < p \leq 1$. In order to do this, we define the weighted Carleson
measure space CMO^p_w and two sequence spaces s^p_w and c^p_w. We first show that c^p_w
is the dual of s^p_w, and then obtain that CMO^p_w is the dual of H^p_w. As a consequence,
CMO^1_w is the same as BMO_w, and hence we succeed by an approach different from
the one in [5] for the wavelet characterization of BMO_w.

Let ψ be an orthonormal wavelet; that is, $\psi \in L^2(\mathbb{R})$ such that the system

$$
\psi_{j,k}(x) := 2^{j/2} \psi(2^j x - k), \quad j, k \in \mathbb{Z},
$$

is an orthonormal basis for $L^2(\mathbb{R})$. We define the operator W_ψ by

$$
W_\psi f = \left\{ \sum_{j,k \in \mathbb{Z}} |(f, \psi_{j,k})|^2 |I_{j,k}|^{-1/2} \right\}^{1/2}, \quad f \in L^2(\mathbb{R}),
$$
where $I_{j,k} = [2^{-j}k, 2^{-j}(k+1)]$. Denoting by \mathcal{D} the set of all dyadic intervals $I_{j,k}$ with $j, k \in \mathbb{Z}$, and letting $\psi_{I_{j,k}} = \psi_{j,k}$, we can also write

$$W_{\psi}f = \left\{ \sum_{I \in \mathcal{D}} |(f, \psi_{I})|^2 |I|^{-1} \chi_{I} \right\}^{1/2}.$$

Henceforth, we always use I and J to denote dyadic intervals. In what follows, we shall work exclusively with the one-dimensional case. For $\alpha \geq 1$, we say that ψ belongs to the regularity class \mathcal{R}^α if $\psi \in C^{(\alpha)}$ and there exist positive constants C, r, ε satisfying C, r, ε

\begin{align*}
(\text{i}) & \quad \int_{\mathbb{R}} x^n \psi(x) \, dx = 0 \quad \text{for all } 0 \leq n \leq [\alpha] - 1, \\
(\text{ii}) & \quad |\psi(x)| \leq \frac{C}{(1 + |x|)^{1+[\alpha]+\varepsilon}} \quad \text{for all } x \in \mathbb{R}, \\
(\text{iii}) & \quad |\psi^{(n)}(x)| \leq \frac{C}{(1 + |x|)^{n+\varepsilon}} \quad \text{for all } x \in \mathbb{R} \text{ and } 0 \leq n \leq [\alpha].
\end{align*}

Here $[\alpha]$ denotes the greatest integer not greater than α.

The weight functions mentioned in this article refer to the Muckenhoupt A_q weights. A weight $w \geq 0$ belongs to the class A_q, $1 < q < \infty$, if there is a constant $C > 0$ such that

$$\left(\int_I w(x) \, dx \right) \left(\int_I w(x)^{-1/(q-1)} \, dx \right)^{q-1} \leq C |I|^q \quad \text{for any interval } I \subset \mathbb{R}.$$

The class A_1 consists of weights w satisfying for some $C > 0$

$$\frac{1}{|I|} \int_I w(x) \, dx \leq C \cdot \text{ess} \inf_{x \in I} w(x) \quad \text{for any interval } I \subset \mathbb{R},$$

and $A_{\infty} := \bigcup_{1 \leq q < \infty} A_q$. For $w \in A_{\infty}$, denote by $q_w := \inf \{ q > 1 : w \in A_q \}$ the critical index of w. We use $w(E)$ to denote the weighted measure $\int_E w(x) \, dx$.

Let $\varphi \in \mathcal{S}$ satisfy $\int_{\mathbb{R}} \varphi(x) \, dx = 1$. The maximal function f^* is defined by

$$f^*(x) = \sup_{r > 0} |f * \varphi_r(x)|,$$

where $\varphi_r(x) = r^{-1} \varphi(x/r)$, $r > 0$. The weighted Hardy spaces H^p_w consist of those tempered distributions $f \in \mathcal{S}'$ for which $f^* \in L^p_w$ with $\|f\|_{H^p_w} = \|f^*\|_{L^p_w}$. We refer readers to [13] for the details about A_q and H^p_w.

The following theorem was proved by Garcia-Cuerva and Martell [2].

Theorem A. Let $0 < p \leq 1$ and $w \in A_{\infty}$. If $\psi \in \mathcal{R}^\alpha$ is an orthonormal wavelet with $\alpha \geq q_w/p$, then there exist constants $0 < c \leq C < \infty$ such that

$$c \|f\|_{H^p_w} \leq \|W_{\psi}f\|_{L^p_w} \leq C \|f\|_{H^p_w}.$$

Definition. For $0 < p \leq 1$ and $w \in A_{\infty}$, let $\psi \in \mathcal{R}^\alpha$ be an orthonormal wavelet with $\alpha \geq q_w/p$. The weighted Carleson space CMO_w^p is the set of all $g \in L^1_{\text{loc}}$ satisfying

$$\|g\|_{CMO_w^p} := \sup_{J \in \mathcal{D}} \left\{ \frac{1}{w(J)^{\frac{1}{p}-1}} \sum_{I \subset J} |(g, \psi_{I})|^2 \frac{|I|}{w(I)} \right\}^{1/2} < \infty.$$
Remark 1. If \(w \equiv \text{constant} \) and \(p = 1 \), then the above definition reduces to the Carleson condition that characterizes \(BMO \) (cf. [4, p. 154]). Theorem A implies that the wavelet characterization of \(H^p_w \) is independent of the choice of \(\psi \), and hence, by the following Theorem 1, the definition of \(CMO^p_w \) is independent of the choice of \(\psi \), too.

We now state our main result as follows.

Theorem 1. For \(0 < p \leq 1 \) and \(w \in A_\infty \), let \(\psi \in \mathcal{R}^n \) be an orthonormal wavelet with \(\alpha \geq q_w/p \). The dual of \(H^p_w \) is \(CMO^p_w \) in the following sense.

(a) For each \(g \in CMO^p_w \), there is a linear functional \(\ell_g \), initially defined on \(H^p_w \cap L^2 \), which has a continuous extension to \(H^p_w \) and \(\| \ell_g \| \leq C \| g \|_{CMO^p_w} \).

(b) Conversely, every continuous linear functional \(\ell \) of \(H^p_w \) can be realized as \(\ell = \ell_g \) with some \(g \in CMO^p_w \) and \(\| g \|_{CMO^p_w} \leq C \| \ell \| \).

It is known that the dual space of \(H^1_w \) is

\[
BMO_w = \left\{ f \in L^1_{\text{loc}} : \sup_{\text{interval } Q} \frac{1}{w(Q)} \int_Q |f(x) - f_Q| \, dx < \infty \right\}
\]

for \(w \in A_\infty \), and the dual space of \(H^p_w \), \(0 < p < 1 \), is

\[
\left\{ \frac{f(x)}{w(x)} \in L^1_{\text{loc}}(w(x) \, dx) : \left(\int_Q \left| \frac{f(x) - P_Q(x)}{w(x)} \right|^{r'} \frac{w(x) \, dx}{w(Q)} \right)^{1/r'} \leq C w(Q)^{1/p - 1} \right\}
\]

for \(w \in A_r \), \(1 \leq r < \infty \), where \(f_Q = \frac{1}{|Q|} \int_Q f(x) \, dx \) and \(P_Q \) is the unique polynomial of degree \(\leq [q_w/p] - 1 \) such that \(\int_Q (f(x) - P_Q(x)) \, x^k \, dx = 0 \) for \(k = 0, 1, \ldots, [q_w/p] - 1 \) (see [1]). Thus, we have a wavelet characterization of \(BMO_w \) and a continuous characterization of \(CMO^p_w \) as follows.

Corollary 2. Let \(0 < p \leq 1 \) and \(w \in A_r \), \(1 \leq r \leq \infty \). Also let \(\psi \in \mathcal{R}^n \) be an orthonormal wavelet with \(\alpha \geq q_w/p \).

(a) For \(p = 1 \) and \(w \in A_\infty \), \(f \in BMO_w \) if and only if its wavelet coefficients \(\langle f, \psi_l \rangle \) satisfy Carleson’s condition:

\[
\sup_{J \in \mathcal{D}} \frac{1}{w(J)} \sum_{l \subseteq J} |\langle f, \psi_l \rangle|^2 \frac{|I|}{w(I)} \leq C.
\]

(b) For \(0 < p < 1 \) and \(w \in A_r \), \(1 \leq r < \infty \), \(f \) satisfies (1) if and only if \(f \in CMO^p_w \).

Remark 2. When the wavelet \(\psi \) has compact support, the above characterization of \(BMO_w \) was given by Wu [5]. Here we offer a different but simpler approach.

2. Sequence spaces

In this section, we introduce two sequence spaces \(s^p_w \) and \(c^p_w \), \(0 < p \leq 1 \).

Definition. Let \(0 < p \leq 1 \) and \(\geq 0 \) be a weight function. The sequence space \(s^p_w \) is defined to be the collection of all complex-valued sequences

\[
s^p_w = \left\{ \{s_I\} : \|\{s_I\}\|_{s^p_w} := \left(\sum_I |s_I|^2 |I|^{-1} \chi_I \right)^{1/2} \in L^p_w \right\}.
\]
Similarly, \(c_w^p \) is defined to be the collection of all complex-valued sequences
\[
c_w^p = \left\{ \{ t_I \} : \| \{ t_I \} \|_{c_w^p} := \sup_{J \in D} \left(\frac{1}{w(J)^{p-1}} \sum_{I \subset J} |t_I|^2 \frac{|I|}{w(I)} \right)^{1/2} < \infty \right\}.
\]

Theorem 3. Let \(0 < p \leq 1 \) and \(w \in A_\infty \). The dual of \(s_w^p \) is \(c_w^p \) in the following sense.

(a) For each \(\{ t_I \} \in c_w^p \), the linear functional \(\{ s_I \} \mapsto \sum_I s_I \cdot \overline{t_I} \) is continuous on \(s_w^p \).

(b) Conversely, every continuous linear functional on \(s_w^p \) arises as in (a) with a unique element \(\{ t_I \} \) of \(c_w^p \).

Moreover, the norm of \(\{ t_I \} \) as a linear functional on \(s_w^p \) is equivalent to its \(c_w^p \)-norm.

Proof. (a) Given \(\{ t_I \} \in c_w^p \), it suffices to show that
\[
\left| \sum_I s_I \cdot \overline{t_I} \right| \leq C \| \{ s_I \} \|_{s_w^p} \| \{ t_I \} \|_{c_w^p} \quad \text{for all } \{ s_I \} \in s_w^p.
\]

For \(\{ s_I \} \in s_w^p \), write
\[
\Omega_k = \left\{ x \in \mathbb{R} : S(x) := \left(\sum_I |s_I|^2 |I|^{-1} \chi_I(x) \right)^{1/2} > 2^k \right\}
\]
and
\[
B_k = \left\{ I : w(I \cap \Omega_k) > \frac{1}{2} w(I) \quad \text{and} \quad w(I \cap \Omega_{k+1}) \leq \frac{1}{2} w(I) \right\}.
\]
Then
\[
\left| \sum_I s_I \cdot \overline{t_I} \right| = \left| \sum_k \sum_{I \in B_k} \sum_{I' \subset I \in \tilde{B}_k} s_I \cdot \overline{t_I} \right| \leq \sum_k \sum_{I \in B_k} \sum_{I' \subset I \in \tilde{B}_k} |s_I| |t_I|,
\]
where \(\tilde{I} \)'s are the maximal dyadic intervals in \(B_k \). Applying the inequality \(\| \cdot \|_{l^p} \leq \| \cdot \|_{c_w^p} \), we get
\[
\sum_k \sum_{I \in B_k} \sum_{I' \subset I \in \tilde{B}_k} |s_I| |t_I| \leq \sum_k \sum_{I \in B_k} \left(\sum_{I' \subset I \in \tilde{B}_k} |s_I|^2 \frac{w(I)}{|I|} \right)^{1/2} \left(\sum_{I' \subset I \in \tilde{B}_k} |t_I|^2 \frac{|I|}{w(I)} \right)^{1/2}
\]
\[
\leq \left\{ \sum_k \sum_{I \in B_k} \left(\sum_{I' \subset I \in \tilde{B}_k} |s_I|^2 \frac{w(I)}{|I|} \right)^{p/2} \left(\sum_{I' \subset I \in \tilde{B}_k} |t_I|^2 \frac{|I|}{w(I)} \right)^{p/2} \right\}^{1/p}
\]
\[
\leq \| \{ t_I \} \|_{c_w^p} \left\{ \sum_k \sum_{I \in B_k} w(I)^{1-2/p} \left(\sum_{I' \subset I \in \tilde{B}_k} |s_I|^2 \frac{w(I)}{|I|} \right)^{p/2} \right\}^{1/p}.
\]

Write
\[
\tilde{\Omega}_k = \{ x \in \mathbb{R} : M_w(\chi_{\tilde{\Omega}_k})(x) > 1/2 \},
\]
where \(M_w \) is the weighted Hardy-Littlewood maximal function defined by
\[
M_w f(x) = \sup_{\text{interval } Q \ni x} \frac{1}{w(\tilde{Q})} \int_Q |f(x)| w(x) dx.
\]
Then \(I \subset \tilde{\Omega}_k \) for any \(I \in B_k \). Since the \(\tilde{I} \)'s are mutually disjoint dyadic intervals, \(\sum_{I \in B_k} w(\tilde{I}) \leq w(\tilde{\Omega}_k) \). We then apply Hölder's inequality to obtain

\[
\left| \sum s_I \cdot t_I \right| \leq \| \{ t_I \} \|_c \left\{ \sum k w(\tilde{\Omega}_k)^{1-p/2} \left(\sum_{I \in B_k} |s_I|^2 w(I) \right)^{p/2} \right\}^{1/p}.
\]

We claim that

\[
\sum_{I \in B_k} |s_I|^2 \frac{w(I)}{|I|} \leq C2^{2k}w(\tilde{\Omega}_k).
\]

\(M_w \) is of weak type \((1,1)\) with respect to \(w(x)dx \), so \(w(\tilde{\Omega}_k) \leq Cw(\Omega_k) \) and the claim gives

\[
\left| \sum s_I \cdot t_I \right| \leq C\| \{ t_I \} \|_c \| S \|_{L_p^w} \leq C\| \{ t_I \} \|_c \| \{ s_I \} \|_{s_p^w}.
\]

To prove the claim, by the definitions of \(S(x) \) and \(B_k \), we have

\[
\int_{\tilde{\Omega}_k \setminus \tilde{\Omega}_{k+1}} S^2(x)w(x) \, dx \leq 2^{2k+2}w(\tilde{\Omega}_k)
\]

and

\[
\int_{\tilde{\Omega}_k \setminus \tilde{\Omega}_{k+1}} S^2(x)w(x) \, dx \geq \int_{\tilde{\Omega}_k \setminus \tilde{\Omega}_{k+1}} \sum_{I \in B_k} |s_I|^2 |I|^{-1} \chi_I(x)w(x) \, dx
\]

\[
= \sum_{I \in B_k} |s_I|^2 \frac{w(I \cap (\tilde{\Omega}_k \setminus \tilde{\Omega}_{k+1}))}{|I|}
\]

\[
\geq \frac{1}{2} \sum_{I \in B_k} |s_I|^2 \frac{w(I)}{|I|}.
\]

(b) Clearly, every \(\ell \in (s_{p}^w)' \) is of the form

\[
\ell(\{ s_I \}) = \sum_I s_I t_I, \quad \{ s_I \} \in s_{p}^w,
\]

where \(\{ t_I \} \) is a certain sequence. Fix a dyadic interval \(J \). Let \(S_J = \{ I \in \mathcal{D} : I \subset J \} \) and define a measure \(\nu \) on \(S_J \) by

\[
d\nu(I) = \frac{|I|}{w(J)^{p-1}} \quad \text{for} \ I \in S_J.
\]
By duality,
\[
\left(\frac{1}{w(J)^{\frac{1}{p}}} \sum_{i \in J} |t_I|^2 \frac{|I|}{w(I)} \right)^{1/2} = \left\| \left\{ \frac{1}{w(I)^{\frac{1}{p}}} \frac{|I|}{w(I)^{\frac{1}{2}}} \right\} \right\|_{\ell^p(S_J, d\nu)}
\]
(2)
\[
\leq \sup_{\{s_I\} \in \ell^2(S_J, d\nu)} \left\| s_I \frac{|I|}{w(J)^{\frac{1}{p}} \cdot w(I)^{\frac{1}{2}}} \right\|_{s^p_w}.
\]
For \(\{s_I\} \in \ell^2(S_J, d\nu) \), Hölder’s inequality yields
\[
\left\| s_I \frac{|I|}{w(J)^{\frac{1}{p}} \cdot w(I)^{\frac{1}{2}}} \right\|_{s^p_w} = \frac{1}{w(J)^{\frac{1}{p}} \cdot w(I)^{\frac{1}{2}}} \left\{ \int_J \left(\sum_{I \in J} |s_I|^2 \frac{|I|}{w(I)^{\frac{1}{2}}} \chi_I(x) \right)^{p/2} w(x) \, dx \right\}^{1/p}
\]
\[
\leq \left\{ \frac{1}{w(J)^{\frac{1}{p}} \cdot w(I)^{\frac{1}{2}}} \int_J \sum_{I \in J} |s_I|^2 \frac{|I|}{w(I)^{\frac{1}{2}}} \chi_I(x) w(x) \, dx \right\}^{1/2}
\]
and hence
\[
\sup_{\{s_I\} \in \ell^2(S_J, d\nu)} \left\| s_I \frac{|I|}{w(J)^{\frac{1}{p}} \cdot w(I)^{\frac{1}{2}}} \right\|_{s^p_w} \leq 1.
\]
Taking the supremum over \(J \in \mathcal{D} \) in (2), we obtain \(\| \{t_I\} \|_{c^p_w} \leq \| \ell \|. \)

3. Proof of the main theorem

In this section we show that Theorem 1 follows as a consequence of Theorem 3. Let \(\psi \in \mathcal{R}^\alpha \), \(\alpha \geq 1 \), be an orthonormal wavelet. Define a map \(P \) from the family of complex sequences into \(\mathcal{S}' \) by
\[
P(\{s_I\}) = \sum_I s_I \psi_I.
\]
Define another map \(L \) from function space into the family of complex sequences by
\[
L(f) = \{ \langle f, \psi_I \rangle \}
\]
such that all \(\{f, \psi_I\} \)'s are well defined. Figure 1 illustrates the relationship among \(s^p_w \), \(c^p_w \), \(H^p_w \), and \(CMO^p_w \). Then \(P \circ L \mid _{L^2} \) is the identity on \(L^2 \). For \(0 < p \leq 1 \) and

\[
\text{dual relation (by Theorem 3)}
\]

\[
\begin{array}{ccc}
P & L & P \\ \\
S^p_w & \downarrow & L \\
\text{dual relation (by Theorem 1)} & & \\
H^p_w & \downarrow & CMO^p_w
\end{array}
\]

Figure 1. Diagram for spaces and maps

\(w \in A^\infty \) with critical index \(q_w \), if \(\alpha \geq q_w / p \), then Theorem A yields
\[
(3) \quad \| \{L(f)\} \|_{s^p_w} \leq C \|f\|_{H^p_w} \quad \text{for } f \in H^p_w \cap L^2
\]
and
\[\|P(\{s_I\})\|_{H^p_w} \leq C \|W_\varepsilon P(\{s_I\})\|_{L^p_w} = C \|\{s_I\}\|_{s^p_w} \quad \text{for } \{s_I\} \in s^p_w. \]

By the definitions of c^p_w and CMO^p_w,
\[\|\{L(g)\}\|_{c^p_w} = \|g\|_{CMO^p_w} \quad \text{for } g \in CMO^p_w \]
and
\[\|P(\{t_I\})\|_{CMO^p_w} = \|\{t_I\}\|_{c^p_w} \quad \text{for } \{t_I\} \in c^p_w. \]

Proof of Theorem 1. For $g \in CMO^p_w$, define a linear functional $\hat{\ell}_g$ by
\[\hat{\ell}_g(f) = \langle L(f), L(g) \rangle \quad \text{for } f \in H^p_w \cap L^2. \]

By (3), (5), and Theorem 3
\[|\hat{\ell}_g(f)| \leq C \|L(f)\|_{c^p_w} \|L(g)\|_{c^p_w} \leq C \|f\|_{H^p_w} \|g\|_{CMO^p_w} \quad \text{for } f \in H^p_w \cap L^2. \]

Since $H^p_w \cap L^2$ is dense in H^p_w, the map $\hat{\ell}_g$ can be extended to a continuous linear functional ℓ_g on H^p_w satisfying $\|\ell_g\| \leq C \|g\|_{CMO^p_w}$.

Conversely, let $\ell \in (H^p_w)'$ and set $\ell_1 = \ell \circ P$ on s^p_w. It follows from (4) that $\ell_1 \in (s^p_w)'$. By Theorem 3 there exists $\{t_I\} \in c^p_w$ such that
\[\ell_1(\{s_I\}) = \sum_I s_I \cdot t_I \quad \text{for } \{s_I\} \in s^p_w, \]
and
\[\|\{t_I\}\|_{c^p_w} \approx \|\ell_1\| \leq C \|\ell\|. \]

For $f \in H^p_w \cap L^2$, we have
\[\ell(f) = \ell_1 \circ L(f) = \sum_I \langle f, \psi_I \rangle t_I = \langle L(f), L(g) \rangle, \]
where $g = \sum_I t_I \psi_I$. This shows that $\ell = \ell_g$, and (3) gives
\[\|g\|_{CMO^p_w} = \|\{t_I\}\|_{c^p_w} \leq C \|\ell\|. \]

Hence, the proof is finished. \qed

References

Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China

E-mail address: mylee@math.ncu.edu.tw

Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China

E-mail address: clin@math.ncu.edu.tw

Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China

E-mail address: linyj@math.ncu.edu.tw