Examples of smooth maps with finitely many critical points in dimensions , and
Authors:
Louis Funar, Cornel Pintea and Ping Zhang
Journal:
Proc. Amer. Math. Soc. 138 (2010), 355365
MSC (2000):
Primary 57R45, 55R55, 58K05, 57R60, 57R70
Published electronically:
September 3, 2009
MathSciNet review:
2550201
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider manifolds which admit smooth maps into a connected sum of with only finitely many critical points, for , and compute the minimal number of critical points.
 1.
Dorin
Andrica and Louis
Funar, On smooth maps with finitely many critical points, J.
London Math. Soc. (2) 69 (2004), no. 3,
783–800. MR 2050046
(2005f:57043), http://dx.doi.org/10.1112/S0024610704005320
Dorin
Andrica and Louis
Funar, Addendum: “On smooth maps with finitely many critical
points” [J. London Math. Soc. (2) 69 (2004), no. 3, 783–800; MR
2050046], J. London Math. Soc. (2) 73 (2006),
no. 1, 231–236. MR 2197380
(2007b:57054), http://dx.doi.org/10.1112/S0024610705022404
 2.
D. Andrica, L. Funar and E. Kudryavtseva, The minimal number of critical points of maps between closed manifolds, Russian Journal of Mathematical Physics, special issue for the conference celebrating the 60th birthday of Nicolae Teleman (Ancona and Porto Nuovo, September 2007), J.P. Brasslet, A. Legrand, R. Longo, A. Mishchenko, editors, to appear.
 3.
Peter
L. Antonelli, Structure theory for MontgomerySamelson fiberings
between manifolds. I, II, Canad. J. Math. 21 (1969), 170–179;
ibid. 21 (1969), 180–186. MR 0238320
(38 #6596)
 4.
Peter
L. Antonelli, Differentiable MontgomerySamelson fiberings with
finite singular sets., Canad. J. Math. 21 (1969),
1489–1495. MR 0261624
(41 #6237)
 5.
Alexandru
Dimca, Singularities and topology of hypersurfaces,
Universitext, SpringerVerlag, New York, 1992. MR 1194180
(94b:32058)
 6.
Robert
E. Gompf and András
I. Stipsicz, 4manifolds and Kirby calculus, Graduate Studies
in Mathematics, vol. 20, American Mathematical Society, Providence,
RI, 1999. MR
1707327 (2000h:57038)
 7.
André
Haefliger, Differential embeddings of 𝑆ⁿ in
𝑆^{𝑛+𝑞} for 𝑞>2, Ann. of Math. (2)
83 (1966), 402–436. MR 0202151
(34 #2024)
 8.
William
Huebsch and Marston
Morse, Schoenflies extensions without interior differential
singularities., Ann. of Math. (2) 76 (1962),
18–54. MR
0146847 (26 #4366)
 9.
I.
M. James and J.
H. C. Whitehead, The homotopy theory of sphere bundles over
spheres. I, Proc. London Math. Soc. (3) 4 (1954),
196–218. MR 0061838
(15,892b)
 10.
I.
M. James and J.
H. C. Whitehead, The homotopy theory of sphere bundles over
spheres. II, Proc. London Math. Soc. (3) 5 (1955),
148–166. MR 0068836
(16,948d)
 11.
François
Laudenbach and Valentin
Poénaru, A note on 4dimensional handlebodies, Bull.
Soc. Math. France 100 (1972), 337–344. MR 0317343
(47 #5890)
 12.
Mamoru
Mimura, Homotopy theory of Lie groups, Handbook of algebraic
topology, NorthHolland, Amsterdam, 1995, pp. 951–991. MR 1361904
(97c:57038), http://dx.doi.org/10.1016/B9780444817792/500201
 13.
Reinhard
Schultz, On the inertia group of a product of
spheres, Trans. Amer. Math. Soc. 156 (1971), 137–153. MR 0275453
(43 #1209), http://dx.doi.org/10.1090/S00029947197102754539
 14.
J.
G. Timourian, Fiber bundles with discrete singular set, J.
Math. Mech. 18 (1968/1969), 61–70. MR 0235571
(38 #3875)
 1.
 D. Andrica and L. Funar, On smooth maps with finitely many critical points, J. London Math. Soc. (2) 69(2004), 783800; Addendum, ibid. 73(2006), 231236. MR 2050046 (2005f:57043); MR 2197380 (2007b:57059)
 2.
 D. Andrica, L. Funar and E. Kudryavtseva, The minimal number of critical points of maps between closed manifolds, Russian Journal of Mathematical Physics, special issue for the conference celebrating the 60th birthday of Nicolae Teleman (Ancona and Porto Nuovo, September 2007), J.P. Brasslet, A. Legrand, R. Longo, A. Mishchenko, editors, to appear.
 3.
 P. L. Antonelli, Structure theory for MontgomerySamelson fiberings between manifolds, I, II. Canad. J. Math. 21(1969), 170179; ibid. 21(1969), 180186. MR 0238320 (38:6596)
 4.
 P. L. Antonelli, Differentiable MontgomerySamelson fiberings with finite singular sets, Canad. J. Math. 21(1969), 14891495. MR 0261624 (41:6237)
 5.
 A. Dimca, Singularities and topology of hypersurfaces, SpringerVerlag, BerlinNew York, 1992. MR 1194180 (94b:32058)
 6.
 R. E. Gompf and A. I. Stipsicz, manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999. MR 1707327 (2000h:57038)
 7.
 A. Haefliger, Differentiable embeddings of in for , Ann. of Math. (2) 83(1966), 402436. MR 0202151 (34:2024)
 8.
 W. Huebsch and M. Morse, Schoenflies extensions without interior differential singularities, Ann. of Math. (2) 76(1962), 1854. MR 0146847 (26:4366)
 9.
 I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. I, Proc. London Math. Soc. (3) 4(1954), 196218. MR 0061838 (15:892b)
 10.
 I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. II, Proc. London Math. Soc. (3) 5(1955), 148166. MR 0068836 (16:948d)
 11.
 F. Laudenbach and V. Poénaru, A note on dimensional handlebodies, Bull. Soc. Math. France 100(1972), 337344. MR 0317343 (47:5890)
 12.
 M. Mimura, Homotopy theory of Lie groups, Handbook of algebraic topology (I. M. James, editor), 951991, NorthHolland, Amsterdam, 1995. MR 1361904 (97c:57038)
 13.
 R. Schultz, On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156(1971), 137153. MR 0275453 (43:1209)
 14.
 J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18(1968/69), 6170. MR 0235571 (38:3875)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
57R45,
55R55,
58K05,
57R60,
57R70
Retrieve articles in all journals
with MSC (2000):
57R45,
55R55,
58K05,
57R60,
57R70
Additional Information
Louis Funar
Affiliation:
Institut Fourier BP 74, UMR 5582, Université de Grenoble I, 38402 SaintMartind’Hères cedex, France
Email:
funar@fourier.ujfgrenoble.fr
Cornel Pintea
Affiliation:
Department of Geometry, “BabeşBolyai” University, 400084 M. Kogălniceanu 1, ClujNapoca, Romania
Email:
cpintea@math.ubbcluj.ro
Ping Zhang
Affiliation:
Department of Mathematics, Eastern Mediterranean University, Gazimagusa, North Cyprus, via Mersin 10, Turkey
Email:
ping.zhang@emu.edu.tr
DOI:
http://dx.doi.org/10.1090/S000299390910028X
PII:
S 00029939(09)10028X
Keywords:
Critical point,
isolated singularity,
Hopf fibration,
suspension,
homotopy sphere
Received by editor(s):
July 21, 2008
Received by editor(s) in revised form:
April 28, 2009
Published electronically:
September 3, 2009
Communicated by:
Paul Goerss
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
