Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the local analytic integrability at the singular point of a class of Liénard analytic differential systems


Authors: Jaume Llibre and Clàudia Valls
Journal: Proc. Amer. Math. Soc. 138 (2010), 253-261
MSC (2000): Primary 34C05, 34A34, 34C14
Published electronically: August 19, 2009
MathSciNet review: 2550190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Liénard analytic differential systems $ \dot x = y$, $ \dot y= -cx -f(x)y$, with $ c \in \mathbb{R}$ and $ f: \mathbb{R}\to \mathbb{R}$ an analytic function. Then for such systems we characterize the existence of local analytic first integrals in a neighborhood of the singular point located at the origin.


References [Enhancements On Off] (What's this?)

  • 1. Colin Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl. 229 (1999), no. 1, 319–329. MR 1664344, 10.1006/jmaa.1998.6175
  • 2. Anna Cima, Armengol Gasull, and Francesc Mañosas, Cyclicity of a family of vector fields, J. Math. Anal. Appl. 196 (1995), no. 3, 921–937. MR 1365231, 10.1006/jmaa.1995.1451
  • 3. Stanislav D. Furta, On non-integrability of general systems of differential equations, Z. Angew. Math. Phys. 47 (1996), no. 1, 112–131. MR 1408674, 10.1007/BF00917577
  • 4. Pierre Joyal and Christiane Rousseau, Saddle quantities and applications, J. Differential Equations 78 (1989), no. 2, 374–399. MR 992152, 10.1016/0022-0396(89)90069-7
  • 5. A. Liapounoff, Problème Général de la Stabilité du Mouvement, Annals of Mathematics Studies, no. 17, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1947 (French). MR 0021186
  • 6. R. Moussu, Une démonstration géométrique d’un théorème de Lyapunov-Poincaré, Bifurcation, ergodic theory and applications (Dijon, 1981) Astérisque, vol. 98, Soc. Math. France, Paris, 1982, pp. 216–223 (French). MR 724449
  • 7. H. POINCARÉ, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques 37 (1881), 375-422; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp. 3-84.
  • 8. H. POINCAR´E, Sur l'intégration des équations différentielles du premier order et du premier degré I and II, Rendiconti del circolo matematico di Palermo 5 (1891), 161-191; 11 (1897), 193-239.
  • 9. Carlos Zuppa, Order of cyclicity of the singular point of Liénard’s polynomial vector fields, Bol. Soc. Brasil. Mat. 12 (1981), no. 2, 105–111. MR 688192, 10.1007/BF02584662

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34C05, 34A34, 34C14

Retrieve articles in all journals with MSC (2000): 34C05, 34A34, 34C14


Additional Information

Jaume Llibre
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Catalonia, Spain
Email: jllibre@mat.uab.cat

Clàudia Valls
Affiliation: Departamento de Matemática, Instituto Superior Técnico, 1049–001 Lisboa, Portugal
Email: cvalls@math.ist.utl.pt

DOI: http://dx.doi.org/10.1090/S0002-9939-09-10036-9
Keywords: Analytic integrability, local analytic integrability, Li\'{e}nard differential system
Received by editor(s): February 21, 2009
Received by editor(s) in revised form: April 30, 2009
Published electronically: August 19, 2009
Communicated by: Yingfei Yi
Article copyright: © Copyright 2009 American Mathematical Society