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GENERALIZATIONS OF RIGID ANALYTIC PICARD
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(Communicated by Ted Chinburg)

Abstract. Berkovich’s Picard theorem states that there are no non-constant
analytic maps from the affine line to the complement of two points on a non-
singular projective curve. The purpose of this article is to find generalizations
of this result in higher dimensional varieties.

1. Introduction

Let K be an algebraically closed field complete with respect to a non-Archime-
dean absolute value of arbitrary characteristic. Berkovich’s Picard theorem states
that there are no nonconstant analytic maps from K to the complement of two
points on a nonsingular projective curve. Some results in this direction for higher
dimensional varieties were obtained by Ru [11], An [1], An-Wang-Wong [3]. All
of these results were recently generalized by An-Cherry-Wang [2], who proved the
following theorem.

Theorem (An-Cherry-Wang). Let X be a non-singular projective variety over K.
Let {Di}�i=1 be � irreducible, effective, ample divisors in general position over X.
Let r be the rank of the subgroup of the Neron-Severi group NS(X) generated by the
classes {[Di]}�i=1 in NS(X). Let f be an analytic map from K to the complement
of the union of the divisors Di, 1 ≤ i ≤ �, on X. Then the image of f is contained
in an algebraic subvariety Y of X such that

dimY ≤ max{dimX + r − �,
r

�
· dimX}.(1)

In particular, f is constant if

� ≥ max{dimX + r, r · dimX + 1}.(2)

Here, a collection of irreducible divisors Di in a projective varietyX of dimension
n are said to be in general position if for each 1 ≤ k ≤ n + 1 and each choice of
indices i1 < · · · < ik, each irreducible component of

Di1 ∩ · · · ∩Dik

has codimension k in X, so in particular is empty when k = n + 1. When r = 1,
the inequalities (1) and (2) are both optimal. However, it does not seem to be the
case when r > 1. In this paper, we will improve the inequality (2) by showing that
f is constant if � ≥ n+ 1. The following is the statement of our main results.
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Main Theorem. Let X be a normal projective variety over K. Let {Di}�i=1 be �
irreducible and effective divisors on X. Let f be an analytic map from K to the
complement of the union of the divisors Di, 1 ≤ i ≤ �, on X.

(A) If Di is big for all i and the intersection
⋂�

i=1 Di is an empty set, then f
is algebraically degenerate, i.e. the image of f is contained in a subvariety
of lower dimension in X.

(B) Suppose the Di are ample and in general position over X. Then f is con-
stant if � ≥ dimX + 1.

Remark. If the Di are in general position and � ≥ dimX + 1, then
⋂�

i=1 Di is an
empty set.

This paper was inspired by some recent developments such as [6], [8], and [9]
in the study of complex analytic curves and integral points in projective varieties.
The techniques in these papers are based on the new proof of Siegel’s theorem
given by Corvaja and Zannier in [5] where they provided a very simple and ele-
gant proof by using Schmidt’s subspace theorem. More recently, they used this
technique to study integral points on surfaces (see [6]), and Liu and Ru [9] have
translated this approach to study complex analytic curves on surfaces. This tech-
nique was also generalized by Levin [8] to get results on integral points on higher
dimensional varieties, generalizing Siegel’s theorem, and, analogously, he also ob-
tained results on complex analytic curves in higher dimensional complex varieties,
generalizing Picard’s theorem. Although he did not get optimal results, he made
some important new conjectures. Our results in this paper provide answers to some
non-Archimedean analogs of these conjectures.

Although our theorem is influenced by the above-mentioned papers, the proof
is not the same. In the previous cases, one has to filter some chosen vector space
of rational functions in order to choose several sets of “good” bases which allows
one to construct linear forms with zeros of high multiplicity and apply the Schmidt
subspace theorem or Nevanlinna’s second main theorem. For the non-Archimedean
case, the second main theorem without ramification term is equivalent to the first
main theorem (cf. [11]). In other words, the second main theorem in the non-
Archimedean case is not a strong tool as in the complex case. Therefore, we will
use classical results on the growth modulus of non-Archimedean analytic functions
instead of the second main theorem. By doing so, we only need to pick up some
“good” rational functions with zeros along some given divisors, and hence there is
no need to filter the chosen vector space as in [6], [9], and [8]. This not only allows
us to provide a simple proof, but also enables us to obtain optimal bounds.

Although our main theorem answers some of Levin’s conjectures in the non-
Archimedean setting, we still cannot estimate the degeneration dimension of the
map f . In view of the Theorem of An-Cherry-Wang stated above, we make the
following conjecture.

Conjecture. Let X be a non-singular projective variety and {Di}�i=1 be � irre-
ducible effective, ample divisors of X which are in general position. Let f be an
analytic map from K to the complement of the union of the divisors Di, 1 ≤ i ≤ �,
on X. If � ≤ dimX, then the image of f is contained in an algebraic subvariety Y
of X such that dimY ≤ dimX + 1− �.
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2. Preliminaries

We recall the definition of big divisors and some basic properties (cf. [7]).

Definition. Let X be a projective variety of dimension n. A Cartier divisor D is
said to be big if h0(X,O(kD)) > ckn for some c > 0 and some sufficiently large
integer k.

Proposition 1. Let X be a projective variety of dimension n and B a Cartier
divisor on X. Then h0(X,O(kB)) ≤ O(kn) for every k > 0.

Proof. Let H be a very ample divisor on X such that H −B is linearly equivalent
to an effective divisor. Then h0(X,O(kB)) ≤ h0(X,O(kH)), and the latter is given
by its Hilbert polynomial. �

We now deduce the following:

Lemma 2. Let B be a big divisor and D be an effective divisor on a normal
projective variety X. Let n = dimX. Then there exists a positive constant c such
that h0(NB −D) ≥ cNn for all sufficiently large integer N .

Proof. From the exact sequence of sheaves

0 → OX(NB −D) → OX(NB) → OD(NB) → 0,

we have

0 → H0(X,OX(NB −D)) → H0(X,OX(NB)) → H0(D,OD(NB)).(3)

Since dimD = n−1, it follows from Proposition 1 that h0(D,OD(NB)) ≤ O(Nn−1).
On the other hand, as B is big, h0(X,OX(NB)) > CNn for some positive constant
C and all sufficiently large N . The assertion then follows easily from the exact
sequence (3). �

3. Proof of the Main Theorem

We will use the following simple estimate to replace Nevanlinna’s second main
theorem in the complex analytic setting as in [8] and [9].

Lemma 3. Let f1, f2,...,fn be non-trivial analytic functions on K. For a fixed
positive number r0, there exists a constant C > 0 such that

sup
|z|=r

min
1≤i≤n

{|fi(z)|} ≥ C > 0

for all r ≥ r0 except a discrete subset of [r0,∞).

Proof. Since the fi are non-trivial, each of them has only finitely many zeros in the
disk |z| ≤ r0. Therefore, there exists z0 in the disc |z| ≤ r0 such that fi(z0) �= 0,
for 1 ≤ i ≤ n. Then

C := min{|f1(z0)|, ..., |fn(z0)|} > 0.

A classical result on the growth modulus of non-Archimedean analytic functions
(cf. [10], Chapter 6.1.4) shows that for all r ≥ 0 except a discrete subset of [0,∞),

sup
|z|=r

|fi(z)| = |fi(w)|, for all |w| = r.(4)
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Since there are only a finite number of fi’s,

sup
|z|=r

|fi(z)| = |fi(w)|, for all |w| = r and 1 ≤ i ≤ n

for all r ≥ r0 except a discrete subset of [r0,∞). For such r, we can easily deduce
that

sup
|z|=r

min
1≤i≤n

{|fi(z)|} = min
1≤i≤n

{ sup
|z|=r

|fi(z)|}

= min
1≤i≤n

{ sup
|z|≤r

|fi(z)|} ≥ min
1≤i≤n

{|fi(z0)|} = C > 0. �

Proof of the Main Theorem. We will first prove the assertion (A). Let D = D1 +
D2 + · · ·+D�. Fix an integer N sufficiently large, which will be determined later,
and consider the following vector space:

VN = {φ ∈ K(X) | div(φ) +ND ≥ 0},

where K(X) is the rational function field of X over K. Let M be the dimension of
VN . For each 1 ≤ i ≤ �, the vector space

Li := {φ ∈ K(X) | div(φ) + (N + 1)Di −D ≥ 0}
= {φ ∈ K(X) | div(φ) +NDi −D1 − · · · −Di−1 −Di+1 − · · · −D� ≥ 0}

is a subspace of VN . By Lemma 2, we may choose a sufficiently large integer N
such that Li is non-trivial for each 1 ≤ i ≤ �. Then we may take a non-trivial
function ψi ∈ Li for each i. Let φ1, ..., φM be a basis of VN and let

‖φ(P )‖ := max
1≤j≤M

{|φj(P )|}

for P ∈ X. We will use the following assertion to complete the proof, and its proof
is given at the end.

Claim. There exists a positive constant c such that for all P ∈ X,

min
1≤i≤�

|ψi(P )| ≤ c‖φ(P )‖− 1
N .

Let f : K → X \
⋃�

i=1 Di be an analytic map. If ψi(f(z)) = 0 for all z ∈ K, then
the image of f is contained in the support of the zero divisors of ψi and hence f is
algebraically degenerate. Therefore, we may assume that ψi ◦ f is not identically
zero for each 1 ≤ i ≤ �. We can also assume φi ◦f is not constant for at least one i,
otherwise f must be algebraically degenerate. It then follows from the claim that

min
1≤i≤�

|ψi(f(z))| ≤ c ‖φ(f(z))‖− 1
N(5)

for some positive constant c independent of z. By (4), for all r ≥ 0 except a discrete
subset of [0,∞),

sup
|z|=r

|ψi(f(z))| = |ψi(f(w))| and sup
|z|=r

|φj(f(z))| = |φj(f(w))|,
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for all |w| = r and 1 ≤ i ≤ �, 1 ≤ j ≤ M . Together with (5), for such r we have

sup
|z|=r

min
1≤i≤�

|ψi(f(z))| = min
1≤i≤�

|ψi(f(w))| for |w| = r

≤ c ‖φ(f(w))‖− 1
N = c ( max

1≤j≤M
{|φj(f(w))|})−

1
N

= c ( max
1≤j≤M

{ sup
|z|=r

|φj(f(z))|})−
1
N .(6)

Since φi is in VN , it has only poles along the support of D. Hence φi ◦ f is an
analytic function. Since φi ◦ f is not constant for at least one i, the right hand
side of (6) approaches zero as r tends to infinity. However, by Lemma 3 the left
hand side of (6) is bounded away from zero by a positive constant independent of
r as r > 1, which leads to a contradiction to conclude that f must be algebraically
degenerate.

We will now prove the claim. Since the intersection of D1,...,D� is empty, every
point in the support of D is in the intersection of at most �−1 distinct Di’s. We can
take a finite affinoid covering U of X such that for each affinoid subdomain U in U ,
U ∩D is either empty or U intersects D at only Di1 ,...,Dik , k ≤ �−1, and moreover
there exist regular functions tij , 1 ≤ j ≤ k, on U such that Dij ∩U = {tij = 0} and⋂k

j=1Dij ∩ U = {ti1 = ti2 = · · · = tik = 0}. We note that this can be done by first
taking a finite Zariski open covering with required properties and then reducing to
the affinoind subdomains by standard construction. Since ψi ∈ Li, it has only a
pole of order at most N along Di and has zeros along Dj for all j �= i. Therefore,
each ψi is regular on those U ∈ U not intersecting the support of D. As a regular
function on an affinoid subdomain is bounded, we can find a constant c1 such that

|ψi(P )| ≤ c1(7)

for all P ∈ U and 1 ≤ i ≤ �. It now remains to consider those U ∈ U intersecting at
least one of the Di. For simplicity of notation, we suppose that U only intersects
D1, D2, . . . , Dk non-trivially. Then ∩k

i=1Di ∩ U = {t1 = t2 = · · · = tk = 0} and
k ≤ � − 1. Therefore, ψk+1 is regular on U and has zeros along Di for 1 ≤ i ≤ k.
Thus, we can find a rational function ρk+1 on X which is regular on U such that

ψk+1 = t1 · · · tk · ρk+1.

Since ρk+1 is bounded above on the affinoid subdomain U , there exists a constant
c2 such that

|ψk+1(P )| ≤ c2 |t1(P )| · · · |tk(P )|(8)

for all P ∈ U . On the other hand, since ordDi
φj ≥ −N, similar arguments can

show that there exists a positive constant c3 such that for all P ∈ U ,

‖φ(P )‖ = max
1≤j≤M

|φj(P )| ≤ c3 |t1(P )|−N · · · |tk(P )|−N .(9)

Equations (8) and (9) imply that there exists a positive constant cU such that for
all P ∈ U ,

min
1≤i≤�

|ψi(P )| ≤ |ψk+1(P )| ≤ cU ‖φ(P )‖− 1
N .(10)

As U is a finite covering, the claim is a consequence of (7) and (10).
We now prove part (B). Suppose now that the Di are ample and in general

position. Then it follows from the previous part of the theorem that the analytic
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map f is algebraically degenerate if � ≥ dimX+1. Suppose that f is not constant.
The image of f is then contained in a subvariety Y of X with dimY ≥ 1. We may
assume that the map f : K → Y is algebraically non-degenerate. This analytic
map f : K → Y takes no value on each of the Di ∩ Y . Let �0 be the cardinality of
the set

{Di ∩ Y : Di �⊃ Y },
and note that Di∩Y �= ∅ for all i because the Di are assumed ample. Without loss
of generality, we may assume that D1 ∩ Y , D2 ∩ Y, . . . , Dl0 ∩ Y are distinct. Then

Y ∩
( l0⋂

j=1

Dj

)
= Y ∩

( l⋂

j=1

Dj

)
.

The right hand side is an empty set because l ≥ dimX + 1 and the Di are ample
and in general position. On the other hand, the dimension on the left hand side is
at least dimY − �0. Therefore,

�0 ≥ dimY + 1.(11)

Let π : Ỹ → Y be the normalization of Y . Since the analytic map f : K → Y is
not algebraic degenerate, the image of f is not contained in the indeterminacy locus
of the rational map from Y to Ỹ , and hence lifts to an analytic map f̃ : K → Ỹ .
It is easy to check that the set of divisors {π∗(Di ∩ Y )}�0i=1 are distinct and their

intersection is empty and that f̃ takes no value on all the π∗(Di ∩ Y ). By part (A)

of the theorem, we have l0 ≤ dim Ỹ = dimY , as the map f̃ is not algebraically
degenerate. This yields a contradiction to (11), and hence we can conclude that f
must be constant. �
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