A note on decay rates for Schrödinger's equation

Authors:
Jian Xie, Linzi Zhang and Thierry Cazenave

Journal:
Proc. Amer. Math. Soc. **138** (2010), 199-207

MSC (2000):
Primary 35Q55

DOI:
https://doi.org/10.1090/S0002-9939-09-10049-7

Published electronically:
August 19, 2009

MathSciNet review:
2550184

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of solutions of the Schrödinger equation on which decay, in various spaces, at different rates along different time sequences going to infinity. We establish a similar result for a nonlinear Schrödinger equation.

**1.**William Beckner,*Inequalities in Fourier analysis*, Ann. of Math. (2)**102**(1975), no. 1, 159–182. MR**0385456**, https://doi.org/10.2307/1970980**2.**Pascal Bégout,*Maximum decay rate for finite-energy solutions of nonlinear Schrödinger equations*, Differential Integral Equations**17**(2004), no. 11-12, 1411–1422. MR**2100034****3.**Thierry Cazenave,*Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR**2002047****4.**Thierry Cazenave, Flávio Dickstein, and Fred B. Weissler,*A solution of the heat equation with a continuum of decay rates*, Elliptic and parabolic problems, Progr. Nonlinear Differential Equations Appl., vol. 63, Birkhäuser, Basel, 2005, pp. 135–138. MR**2176707**, https://doi.org/10.1007/3-7643-7384-9_15**5.**Thierry Cazenave and Fred B. Weissler,*Rapidly decaying solutions of the nonlinear Schrödinger equation*, Comm. Math. Phys.**147**(1992), no. 1, 75–100. MR**1171761****6.**Thierry Cazenave and Fred B. Weissler,*Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations*, Math. Z.**228**(1998), no. 1, 83–120. MR**1617975**, https://doi.org/10.1007/PL00004606**7.**Thierry Cazenave and Fred B. Weissler,*Scattering theory and self-similar solutions for the nonlinear Schrödinger equation*, SIAM J. Math. Anal.**31**(2000), no. 3, 625–650. MR**1745480**, https://doi.org/10.1137/S0036141099351309**8.**Thierry Cazenave and Fred B. Weissler,*Spatial decay and time-asymptotic profiles for solutions of Schrödinger equations*, Indiana Univ. Math. J.**55**(2006), no. 1, 75–118. MR**2207548**, https://doi.org/10.1512/iumj.2006.55.2664**9.**Fang, D., Xie, J. and Cazenave, T. Multiscale asymptotic behavior of the Schrödinger equation, in preparation.**10.**J. Ginibre and G. Velo,*On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case*, J. Funct. Anal.**32**(1979), no. 1, 1–32. MR**533218**, https://doi.org/10.1016/0022-1236(79)90076-4**11.**Tosio Kato,*An 𝐿^{𝑞,𝑟}-theory for nonlinear Schrödinger equations*, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 223–238. MR**1275405****12.**Strauss, W.A. Nonlinear scattering theory, in*Scattering theory in mathematical physics*, J. A. Lavita and J.-P. Marchand (eds.), Reidel, 1974, 53-78.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Jian Xie**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China

Email:
sword711@gmail.com

**Linzi Zhang**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China

Email:
linzi0116@gmail.com

**Thierry Cazenave**

Affiliation:
Université Pierre et Marie Curie & CNRS, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

Email:
thierry.cazenave@upmc.fr

DOI:
https://doi.org/10.1090/S0002-9939-09-10049-7

Keywords:
Schr\"odinger's equation,
asymptotic behavior,
decay rate

Received by editor(s):
March 3, 2009

Published electronically:
August 19, 2009

Additional Notes:
The first two authors were supported by NSFC 10871175

Communicated by:
Walter Craig

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.