A note on decay rates for Schrödinger's equation
Authors:
Jian Xie, Linzi Zhang and Thierry Cazenave
Journal:
Proc. Amer. Math. Soc. 138 (2010), 199207
MSC (2000):
Primary 35Q55
Published electronically:
August 19, 2009
MathSciNet review:
2550184
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove the existence of solutions of the Schrödinger equation on which decay, in various spaces, at different rates along different time sequences going to infinity. We establish a similar result for a nonlinear Schrödinger equation.
 1.
William
Beckner, Inequalities in Fourier analysis, Ann. of Math. (2)
102 (1975), no. 1, 159–182. MR 0385456
(52 #6317)
 2.
Pascal
Bégout, Maximum decay rate for finiteenergy solutions of
nonlinear Schrödinger equations, Differential Integral Equations
17 (2004), no. 1112, 1411–1422. MR 2100034
(2005i:35241)
 3.
Thierry
Cazenave, Semilinear Schrödinger equations, Courant
Lecture Notes in Mathematics, vol. 10, New York University Courant
Institute of Mathematical Sciences, New York, 2003. MR 2002047
(2004j:35266)
 4.
Thierry
Cazenave, Flávio
Dickstein, and Fred
B. Weissler, A solution of the heat equation with a continuum of
decay rates, Elliptic and parabolic problems, Progr. Nonlinear
Differential Equations Appl., vol. 63, Birkhäuser, Basel, 2005,
pp. 135–138. MR 2176707
(2006e:35144), http://dx.doi.org/10.1007/3764373849_15
 5.
Thierry
Cazenave and Fred
B. Weissler, Rapidly decaying solutions of the nonlinear
Schrödinger equation, Comm. Math. Phys. 147
(1992), no. 1, 75–100. MR 1171761
(93d:35150)
 6.
Thierry
Cazenave and Fred
B. Weissler, Asymptotically selfsimilar global solutions of the
nonlinear Schrödinger and heat equations, Math. Z.
228 (1998), no. 1, 83–120. MR 1617975
(99d:35149), http://dx.doi.org/10.1007/PL00004606
 7.
Thierry
Cazenave and Fred
B. Weissler, Scattering theory and selfsimilar solutions for the
nonlinear Schrödinger equation, SIAM J. Math. Anal.
31 (2000), no. 3, 625–650 (electronic). MR 1745480
(2001h:35169), http://dx.doi.org/10.1137/S0036141099351309
 8.
Thierry
Cazenave and Fred
B. Weissler, Spatial decay and timeasymptotic profiles for
solutions of Schrödinger equations, Indiana Univ. Math. J.
55 (2006), no. 1, 75–118. MR 2207548
(2007d:35224), http://dx.doi.org/10.1512/iumj.2006.55.2664
 9.
Fang, D., Xie, J. and Cazenave, T. Multiscale asymptotic behavior of the Schrödinger equation, in preparation.
 10.
J.
Ginibre and G.
Velo, On a class of nonlinear Schrödinger equations. I. The
Cauchy problem, general case, J. Funct. Anal. 32
(1979), no. 1, 1–32. MR 533218
(82c:35057), http://dx.doi.org/10.1016/00221236(79)900764
 11.
Tosio
Kato, An 𝐿^{𝑞,𝑟}theory for nonlinear
Schrödinger equations, Spectral and scattering theory and
applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan,
Tokyo, 1994, pp. 223–238. MR 1275405
(95i:35276)
 12.
Strauss, W.A. Nonlinear scattering theory, in Scattering theory in mathematical physics, J. A. Lavita and J.P. Marchand (eds.), Reidel, 1974, 5378.
 1.
 Beckner, W. Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159182. MR 0385456 (52:6317)
 2.
 Bégout, P. Maximum decay rate for finiteenergy solutions of nonlinear Schrödinger equations, Differential Integral Equations 17 (2004), 14111422. MR 2100034 (2005i:35241)
 3.
 Cazenave, T. Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047 (2004j:35266)
 4.
 Cazenave, T., Dickstein, F. and Weissler, F. B. A solution of the heat equation with a continuum of decay rates, in Elliptic and parabolic problems: A special tribute to the work of Haım Brezis, Progress in Nonlinear Differential Equations and Their Applications, 63. BirkhäuserVerlag, Basel, 2005, 135138. MR 2176707 (2006e:35144)
 5.
 Cazenave, T. and Weissler, F. B. Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1992), 75100. MR 1171761 (93d:35150)
 6.
 Cazenave, T. and Weissler, F. B. Asymptotically selfsimilar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 (1998), 83120. MR 1617975 (99d:35149)
 7.
 Cazenave, T. and Weissler, F. B. Scattering theory and selfsimilar solutions for the nonlinear Schrödinger equation, SIAM J. Math. Anal. 31 (2000), 625650. MR 1745480 (2001h:35169)
 8.
 Cazenave, T. and Weissler, F. B. Spatial decay and timeasymptotic profiles for solutions of Schrödinger equations, Indiana Univ. Math. J. 55, no. 1 (2006), 75118. MR 2207548 (2007d:35224)
 9.
 Fang, D., Xie, J. and Cazenave, T. Multiscale asymptotic behavior of the Schrödinger equation, in preparation.
 10.
 Ginibre, J. and Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32, no. 1 (1979), 132. MR 533218 (82c:35057)
 11.
 Kato, T. An theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, Advanced Studies in Pure Mathematics, 23, Math. Soc. Japan, Tokyo, 1994, 223238. MR 1275405 (95i:35276)
 12.
 Strauss, W.A. Nonlinear scattering theory, in Scattering theory in mathematical physics, J. A. Lavita and J.P. Marchand (eds.), Reidel, 1974, 5378.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
35Q55
Retrieve articles in all journals
with MSC (2000):
35Q55
Additional Information
Jian Xie
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
Email:
sword711@gmail.com
Linzi Zhang
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
Email:
linzi0116@gmail.com
Thierry Cazenave
Affiliation:
Université Pierre et Marie Curie & CNRS, Laboratoire JacquesLouis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email:
thierry.cazenave@upmc.fr
DOI:
http://dx.doi.org/10.1090/S0002993909100497
PII:
S 00029939(09)100497
Keywords:
Schr\"odinger's equation,
asymptotic behavior,
decay rate
Received by editor(s):
March 3, 2009
Published electronically:
August 19, 2009
Additional Notes:
The first two authors were supported by NSFC 10871175
Communicated by:
Walter Craig
Article copyright:
© Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
