A note on decay rates for Schrödinger's equation

Authors:
Jian Xie, Linzi Zhang and Thierry Cazenave

Journal:
Proc. Amer. Math. Soc. **138** (2010), 199-207

MSC (2000):
Primary 35Q55

DOI:
https://doi.org/10.1090/S0002-9939-09-10049-7

Published electronically:
August 19, 2009

MathSciNet review:
2550184

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of solutions of the Schrödinger equation on which decay, in various spaces, at different rates along different time sequences going to infinity. We establish a similar result for a nonlinear Schrödinger equation.

**1.**Beckner, W. Inequalities in Fourier analysis, Ann. of Math. (2)**102**(1975), no. 1, 159-182. MR**0385456 (52:6317)****2.**Bégout, P. Maximum decay rate for finite-energy solutions of nonlinear Schrödinger equations, Differential Integral Equations**17**(2004), 1411-1422. MR**2100034 (2005i:35241)****3.**Cazenave, T.*Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics,**10**. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR**2002047 (2004j:35266)****4.**Cazenave, T., Dickstein, F. and Weissler, F. B. A solution of the heat equation with a continuum of decay rates, in*Elliptic and parabolic problems: A special tribute to the work of Haım Brezis*, Progress in Nonlinear Differential Equations and Their Applications,**63**. Birkhäuser-Verlag, Basel, 2005, 135-138. MR**2176707 (2006e:35144)****5.**Cazenave, T. and Weissler, F. B. Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys.**147**(1992), 75-100. MR**1171761 (93d:35150)****6.**Cazenave, T. and Weissler, F. B. Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.**228**(1998), 83-120. MR**1617975 (99d:35149)****7.**Cazenave, T. and Weissler, F. B. Scattering theory and self-similar solutions for the nonlinear Schrödinger equation, SIAM J. Math. Anal.**31**(2000), 625-650. MR**1745480 (2001h:35169)****8.**Cazenave, T. and Weissler, F. B. Spatial decay and time-asymptotic profiles for solutions of Schrödinger equations, Indiana Univ. Math. J.**55**, no. 1 (2006), 75-118. MR**2207548 (2007d:35224)****9.**Fang, D., Xie, J. and Cazenave, T. Multiscale asymptotic behavior of the Schrödinger equation, in preparation.**10.**Ginibre, J. and Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal.**32**, no. 1 (1979), 1-32. MR**533218 (82c:35057)****11.**Kato, T. An -theory for nonlinear Schrödinger equations, in*Spectral and scattering theory and applications*, Advanced Studies in Pure Mathematics,**23**, Math. Soc. Japan, Tokyo, 1994, 223-238. MR**1275405 (95i:35276)****12.**Strauss, W.A. Nonlinear scattering theory, in*Scattering theory in mathematical physics*, J. A. Lavita and J.-P. Marchand (eds.), Reidel, 1974, 53-78.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Jian Xie**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China

Email:
sword711@gmail.com

**Linzi Zhang**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China

Email:
linzi0116@gmail.com

**Thierry Cazenave**

Affiliation:
Université Pierre et Marie Curie & CNRS, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

Email:
thierry.cazenave@upmc.fr

DOI:
https://doi.org/10.1090/S0002-9939-09-10049-7

Keywords:
Schr\"odinger's equation,
asymptotic behavior,
decay rate

Received by editor(s):
March 3, 2009

Published electronically:
August 19, 2009

Additional Notes:
The first two authors were supported by NSFC 10871175

Communicated by:
Walter Craig

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.