Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Toeplitz operators on Bergman spaces of the unit polydisk


Author: Trieu Le
Journal: Proc. Amer. Math. Soc. 138 (2010), 275-285
MSC (2000): Primary 47B35
DOI: https://doi.org/10.1090/S0002-9939-09-10060-6
Published electronically: August 25, 2009
MathSciNet review: 2550193
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study Toeplitz operators on the Bergman space $ A^2_{\vartheta}$ of the unit polydisk $ \mathbb{D}^n$, where $ \vartheta$ is a product of $ n$ rotation-invariant regular Borel probability measures. We show that if $ f$ is a bounded Borel function on $ \mathbb{D}^n$ such that $ F(w)=\lim\limits_{\substack{z\rightarrow w\\ z\in\mathbb{D}^n}}f(z)$ exists for all $ w\in\partial\mathbb{D}^n$, then $ T_f$ is compact if and only if $ F=0$ a.e. with respect to a measure $ \gamma$ associated with $ \vartheta$ on the boundary $ \partial\mathbb{D}^n$ . We also discuss the commuting problem: if $ g$ is a non-constant bounded holomorphic function on $ \mathbb{D}^n$, then what conditions does a bounded function $ f$ need to satisfy so that $ T_f$ commutes with $ T_g$?


References [Enhancements On Off] (What's this?)

  • 1. Sheldon Axler and Željko Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12. MR 1079815 (92f:47018)
  • 2. Sheldon Axler, Željko Čučković and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953. MR 1694299 (2000m:47035)
  • 3. Guangfu Cao, On a problem of Axler, Cuckovic and Rao, Proc. Amer. Math. Soc. 136 (2008), no. 3, 931-935 (electronic). MR 2361866 (2009a:47052)
  • 4. Boo Rim Choe, Hyungwoon Koo and Young Joo Lee, Commuting Toeplitz operators on the polydisk, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749 (electronic). MR 2031039 (2004k:47054)
  • 5. Boo Rim Choe and Young Joo Lee, Pluriharmonic symbols of commuting Toeplitz operators, Illinois J. Math. 37 (1993), no. 3, 424-436. MR 1219648 (94i:47041)
  • 6. Lewis A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433-439. MR 0322595 (48:957)
  • 7. Trieu Le, Compact Toeplitz operators with continuous symbols, Glasg. Math. J. 51 (2009), no. 2, 257-261.
  • 8. Young Joo Lee, Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces, Canad. Math. Bull. 41 (1998), no. 2, 129-136. MR 1624149 (99b:47035)
  • 9. Takahiko Nakazi and Rikio Yoneda, Compact Toeplitz operators with continuous symbols on weighted Bergman spaces, Glasg. Math. J. 42 (2000), no. 1, 31-35. MR 1739694 (2000i:47052)
  • 10. Sun Hua Sun and Dechao Zheng, Toeplitz operators on the polydisk, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3351-3356. MR 1328380 (97a:47038)
  • 11. Dechao Zheng, Commuting Toeplitz operators with pluriharmonic symbols, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1595-1618. MR 1443898 (98i:47027)
  • 12. Kehe Zhu, Operator theory in function spaces, second ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536 (2008i:47064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B35

Retrieve articles in all journals with MSC (2000): 47B35


Additional Information

Trieu Le
Affiliation: Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
Email: t29le@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-09-10060-6
Keywords: Bergman space, Toeplitz operator, compact operator, commuting problem
Received by editor(s): November 9, 2008
Received by editor(s) in revised form: May 28, 2009
Published electronically: August 25, 2009
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society