Geometry of -Stiefel manifolds

Author:
Eduardo Chiumiento

Journal:
Proc. Amer. Math. Soc. **138** (2010), 341-353

MSC (2000):
Primary 22E65; Secondary 47B10, 58B20

DOI:
https://doi.org/10.1090/S0002-9939-09-10080-1

Published electronically:
August 28, 2009

MathSciNet review:
2550200

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a separable Banach ideal in the space of bounded operators acting in a Hilbert space and the Banach-Lie group of unitary operators which are perturbations of the identity by elements in . In this paper we study the geometry of the unitary orbits

**1.**E. Andruchow, G. Corach,*Metrics in the set of partial isometries with finite rank*, Rendiconti Matematici della Accademia Nazionale dei Lincei s. 9,**16**(2005), 31-44. MR**2225921 (2007b:47185)****2.**E. Andruchow, G. Corach,*Differential geometry of partial isometries and partial unitaries*, Illinois J. Math.**48**(2004), no. 1, 97-120. MR**2048217 (2005c:46074)****3.**E. Andruchow, G. Corach, M. Mbekhta,*On the geometry of generalized inverses*, Math. Nachr.**278**(2005), no. 7-8, 756-770. MR**2141955 (2006f:46047)****4.**J. Avron, R. Seiler, B. Simon,*The index of a pair of projections*, J. Funct. Anal.**120**(1994), no. 1, 220-237. MR**1262254 (95b:47012)****5.**D. Beltiţă,*Smooth homogeneous structures in operator theory*, Monographs and Surveys in Pure and Applied Mathematics, 137, Chapman and Hall/CRC, Boca Raton, FL, 2006. MR**2188389 (2007c:58010)****6.**D. Beltiţă, T. S. Ratiu, A. B. Tumpach,*The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits*, J. Funct. Anal.**247**(2007), no. 1, 138-168. MR**2319757 (2009d:58014)****7.**A. L. Carey,*Some homogeneous spaces and representations of the Hilbert Lie group*, Rev. Roumaine Math. Pures Appl.**30**(1985), no. 7, 505-520. MR**826232 (87e:22044)****8.**I. C. Gohberg, M. G. Kreın,*Introduction to the theory of linear nonselfadjoint operators*, Amer. Math. Soc., Providence, RI, 1969. MR**0246142 (39:7447)****9.**P. R. Halmos, J. E. McLaughlin,*Partial isometries*, Pacific J. Math.**13**(1963), 585-596. MR**0157241 (28:477)****10.**S. Lang,*Introduction to differentiable manifolds*. Second edition. Universitext, Springer-Verlag, New York, 2002. MR**1931083 (2003h:58002)****11.**L. Mata-Lorenzo, L. Recht,*Infinite-dimensional homogeneous reductive spaces*, Acta Cient. Venezolana**43**(1992), 76-90. MR**1185114 (93j:46052)****12.**M. Mbekhta, Ş. Strătilă,*Homotopy classes of partial isometries in von Neumann algebras*, Acta Sci. Math. (Szeged)**68**(2002), 271-277. MR**1916580 (2003f:46097)****13.**I. Raeburn,*The relationship between a commutative Banach algebra and its maximal ideal space*, J. Funct. Anal.**25**(1977), no. 4, 366-390. MR**0458180 (56:16383)****14.**I. Serban, F. Turcu,*Compact perturbations of isometries*, Proc. Amer. Math. Soc.**135**(2007), 1175-1180. MR**2262923 (2007j:47023)****15.**Ş. Strătilă, D. Voiculescu,*On a class of KMS states for the group*, Math. Ann.**235**(1978), 87-110. MR**0482248 (58:2327)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
22E65,
47B10,
58B20

Retrieve articles in all journals with MSC (2000): 22E65, 47B10, 58B20

Additional Information

**Eduardo Chiumiento**

Affiliation:
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 50 y 115, (1900) La Plata, Argentina

Email:
eduardo@mate.unlp.edu.ar

DOI:
https://doi.org/10.1090/S0002-9939-09-10080-1

Keywords:
Partial isometry,
Banach ideal,
Finsler metric

Received by editor(s):
September 18, 2008

Received by editor(s) in revised form:
April 22, 2009

Published electronically:
August 28, 2009

Communicated by:
Marius Junge

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.