SOLUTION TO FARHADI–GAHARAMANI’S MULTIPLIER PROBLEM

MATTHIAS NEUFANG

(Communicated by Marius Junge)

Let G be a locally compact group, and consider its group algebra $L_1(G)$ with convolution product. Let $A = L_1(G)^{**}$, endowed with the first Arens product, which we shall denote by \cdot. We write \cdot for the first Arens product on A^{**}, as well as for the canonical left action of A^{**} on A^*, and of A^* on A. Recall that these are defined as follows, for $m, n \in A^{**}$, $f \in A^*$ and $a, b \in A$:
\[
\langle m \cdot n, f \rangle = \langle m, n \cdot f \rangle,
\]
\[
\langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle,
\]
\[
\langle f \cdot a, b \rangle = \langle f, a \ast b \rangle.
\]
Analogously, one defines the second Arens product starting from the product $b \ast a$ (but we shall not need this here).

In [3], noting that for any $N \in L_1(G)^{****}$ the map
\[
R_N(f) := N \cdot f \quad (f \in L_1(G)^{***})
\]
is a right $L_1(G)$-module homomorphism on $L_1(G)^{***}$, the authors ask the following question [3, Problem 4.1]:

Is every w^\ast-continuous surjective right $L_1(G)$-module map
\[
(*) \quad R : L_1(G)^{***} \to L_1(G)^{***} \text{ equal to } R_N \text{ for some } N \in L_1(G)^{****}?
\]

In the present paper we shall show:

Theorem 1. The answer to the above multiplier problem is negative for all infinite, countable, discrete, abelian groups (e.g., for $G = \mathbb{Z}$).

To prepare the proof, let us first consider $A = \ell_1(G)^{**}$ for an arbitrary discrete group G. Denote by $B_{C^r}(A^*)$ the algebra of all bounded linear right C^r-module maps on A^*, where C is a (closed) subalgebra of A, and by $B_{C^r}(A^*)$ the subalgebra of w^*-continuous module maps.
Since \mathcal{A} is unital, by [8] Proposition 4.1, the map R_N induces an isometric algebra isomorphism

$$\mathcal{A}^{**} = (A^* \cdot \mathcal{A})^* \cong B_{\mathcal{A},r}(\mathcal{A}^*)$$

So we need to find a surjective map

$$(1) \quad \Phi \in B_{\ell_1(G),r}(\ell_1(G)^{**}) \setminus B_{\ell_1(G)^{**},r}(\ell_1(G)^{**})$$

(which, as we shall see, exists whenever G is infinite, countable, and abelian). Note that, as is easily checked, for any $N \in \ell_1(G)^{****}$ the map R_N is in fact a right $\ell_1(G)^{**}$-module homomorphism, i.e., belongs to $B_{\ell_1(G)^{**},r}(\ell_1(G)^{**})$.

For later use we shall give below some background on semigroup compactifications; for a full meal, we refer the reader to [5] and [1]. Recall that the spectrum of the commutative C^*-algebra $\ell_\infty(G)$ is the Stone–Čech compactification βG, which is a compact right topological semigroup with the first Arens product (inherited from $\ell_1(G)^{**}$). Denoting the closure in βG of a subset S of G by \overline{S}, one defines the growth or remainder of S as

$$S^* := \overline{S} \cap (\beta G \setminus G);$$

then S^* is compact, and G^* is a compact right topological semigroup. An element $s \in \beta G$ is called left cancellable if left multiplication by s is injective on βG.

For $m \in \mathcal{A}$, write λ_m for left multiplication by m in \mathcal{A}. We note the following.

Lemma 2. If m is a left cancellable element of βG, then $\lambda_m : \ell_1(G)^{**} \to \ell_1(G)^{**}$ is an isometry.

Proof. This can be shown by transferring verbatim the argument given in [1] Proposition 4.4 for right multiplication to our situation (the compact right topological semigroup V in [1] Proposition 4.4 is βG in our case). \square

We are now ready to derive Theorem [1]

Proof. Let G be an infinite, countable, discrete, abelian group, and recall that we write $\mathcal{A} = \ell_1(G)^{**}$ (endowed with the first Arens product). Then, by [5] Section 8.4, there exists $m \in G^* \subseteq \mathcal{A}$ such that m is left cancellable in βG. In view of Lemma [2], $\Phi := \lambda_m \in B^{**}(\mathcal{A}^*)$ is surjective. To establish (1), we need to show that

1. Φ is a right $\ell_1(G)$-module map,
2. Φ is not a right $\ell_1(G)^{**}$-module map.

To see (i), let $H \in \mathcal{A}^*$, $a \in \ell_1(G) \subseteq \mathcal{A}$ and $b \in \mathcal{A}$. Then we have

$$\langle \Phi(H \cdot a), b \rangle = \langle H, a \ast m \ast b \rangle.$$

But $a \in \ell_1(G)$, and since G is abelian, $\ell_1(G)$ is contained in the algebraic centre of $\ell_1(G)^{**}$. Hence a commutes with m, and we get

$$\langle \Phi(H \cdot a), b \rangle = \langle H, m \ast a \ast b \rangle = \langle \Phi(H) \cdot a, b \rangle,$$

as desired.

As for (ii), assume towards a contradiction that Φ is a right \mathcal{A}-module map. Then we obtain for all $H \in \mathcal{A}^*$ and $a, b \in \mathcal{A}$ that

$$\langle H, a \ast m \ast b \rangle = \langle \Phi(H \cdot a), b \rangle = \langle \Phi(H) \cdot a, b \rangle = \langle H, m \ast a \ast b \rangle.$$

Thus, we have $a \ast m \ast b = m \ast a \ast b$ for all $a, b \in \mathcal{A}$, whence (choosing $b = \delta_e$, the unit of \mathcal{A}) we see that m lies in the algebraic centre $Z_\alpha(\mathcal{A})$ of $\mathcal{A} = \ell_1(G)^{**}$. But since $\ell_1(G)$ is commutative, $Z_\alpha(\mathcal{A})$ equals the first topological centre $Z^1(\mathcal{A})$ of \mathcal{A}, i.e., the
set of all elements $n \in A$ such that λ_n is w^*-continuous on A. By [7, Theorem 1], $Z_1^*(\ell_1(G)^{**}) = \ell_1(G)$. Hence we obtain that $m \in \ell_1(G)$, which contradicts the fact that $m \in G^*$.

\[\square \]

Remark 3. The motivation for question (\ast), i.e., [3, Problem 4.1], stems from its link to a long-standing open problem raised by Duncan and Hosseiniun [2, p. 323] asking if, for a locally compact group G, the natural involution on $L_1(G)$ extends to an involution on its bidual. Indeed, Farhadi–Ghahramani show in [3, Theorem 4.2] that the latter has a negative answer for all infinite, locally compact groups G satisfying (\ast). Note that the existence of an extension of the involution forces G to be discrete (cf. [4, Theorem 2] or [3, Proposition 3.1]). Now, on the one hand, our Theorem 1 shows that there are discrete groups which violate (\ast). On the other hand, [3, Theorem 3.2(a)] answers Duncan–Hosseiniun’s question in the negative for all (discrete) groups which admit an infinite, amenable subgroup. It follows from work by Ol’shanski˘ı [9] that there are infinite, countable, discrete groups without infinite, amenable subgroups (cf. [6, Remark 11]). So, the Duncan–Hosseiniun problem remains open for this class of groups, and the approach proposed through [3, Theorem 4.2] may very well prove fruitful since these groups, being of course radically different from the ones appearing in Theorem 1, may satisfy (\ast).

References

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

E-mail address: mneufang@math.carleton.ca