Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hypergeometric $ \mathbf{{}_3{\it F}_2(1/4)}$ evaluations over finite fields and Hecke eigenforms


Author: Ron Evans
Journal: Proc. Amer. Math. Soc. 138 (2010), 517-531
MSC (2000): Primary 11T24; Secondary 11F11, 11L05, 33C20
DOI: https://doi.org/10.1090/S0002-9939-09-10091-6
Published electronically: September 16, 2009
MathSciNet review: 2557169
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H$ denote the hypergeometric $ {}_3F_2$ function over $ \mathbb{F}_p$ whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating $ H$ at the argument $ 1/4$. This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono's result by evaluating an infinite family of $ {}_3F_2(1/4)$ over $ \mathbb{F}_q$ in terms of Jacobi sums. Here we present five new $ {}_3F_2(1/4)$ over $ \mathbb{F}_q$ (involving characters of orders 3, 4, 6, and 8) which are conjecturally evaluable in terms of eigenvalues for Hecke eigenforms of weights 2 and 3. There is ample numerical evidence for these evaluations. We motivate our conjectures by proving a connection between $ {}_3F_2(1/4)$ and twisted sums of traces of the third symmetric power of twisted Kloosterman sheaves.


References [Enhancements On Off] (What's this?)

  • [1] S. Ahlgren, K. Ono, Modularity of a certain Calabi-Yau threefold, Monatsh. Math. 129 (2000), 177-190. MR 1746757 (2001b:11059)
  • [2] S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212. MR 1739404 (2001c:11057)
  • [3] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, Wiley-Interscience, John Wiley & Sons, New York, 1998. MR 1625181 (99d:11092)
  • [4] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252. MR 601520 (83c:14017)
  • [5] R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math., to appear.
  • [6] R. J. Evans, J. Greene, Clausen's theorem and hypergeometric functions over finite fields, Finite Fields Appl. 15 (2009), 97-109. MR 2468995
  • [7] R. J. Evans, J. Greene, Evaluations of hypergeometric functions over finite fields, Hiroshima Math. J. 39 (2009), 217-235.
  • [8] R. J. Evans, F. Lam, Special values of hypergeometric functions over finite fields, Ramanujan J. 19 (2009), 151-162.
  • [9] S. Frechette, K. Ono, M. Papanikolas, Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not. 2004, no. 60, 3233-3262. MR 2096220 (2006a:11055)
  • [10] L. Fu, D. Wan, $ L$-functions for symmetric products of Kloosterman sums, J. Reine Angew. Math. 589 (2005), 79-103. MR 2194679 (2006k:11159)
  • [11] L. Fu, D. Wan, Trivial factors for $ L$-functions of symmetric products of Kloosterman sheaves, Finite Fields Appl. 14 (2008), 549-570. MR 2401995 (2009c:11135)
  • [12] L. Fu, D. Wan, $ L$-functions of symmetric products of the Kloosterman sheaf over $ {Z}$, Math. Annalen 342 (2008), 387-404. MR 2425148
  • [13] L. Fu, D. Wan, Functional equations of $ L$-functions for symmetric products of the Kloosterman sheaf, preprint.
  • [14] J. Fuselier, Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, Ph.D. thesis, Texas A&M University, 2007.
  • [15] J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), 77-101. MR 879564 (88e:11122)
  • [16] K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), 263-289. MR 1874236 (2003b:11058)
  • [17] H. Iwaniec, Topics in classical automorphic forms, Amer. Math. Soc., Providence, RI, 1997. MR 1474964 (98e:11051)
  • [18] N. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies 116, Princeton University Press, Princeton, NJ, 1988. MR 955052 (91a:11028)
  • [19] N. Katz, email communication, December 2005.
  • [20] M. Koike, Hypergeometric series over finite fields and Apéry numbers, Hiroshima Math. J. 22 (1992), 461-467. MR 1194045 (93i:11146)
  • [21] D. H. Lehmer, E. Lehmer, On the cubes of Kloosterman sums, Acta Arith. 6 (1960), 15-22. MR 0115976 (22:6773)
  • [22] C. Liu, Twisted higher moments of Kloosterman sums, Proc. Amer. Math. Soc. 130 (2002), 1887-1892. MR 1896019 (2003a:11102)
  • [23] R. Livné, Motivic orthogonal two-dimensional representations of $ {Gal}(\overline {\mathbf Q}/\mathbf Q)$, Israel J. Math. 92 (1995), 149-156. MR 1357749 (96m:11050)
  • [24] E. Mortenson, Supercongruences for truncated $ {}_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. 133 (2005), 321-330. MR 2093051 (2005f:11080)
  • [25] K. Ono, Values of Gaussian hypergeometric series, Trans. Amer. Math. Soc. 350 (1998), 1205-1223. MR 1407498 (98e:11141)
  • [26] K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and $ q$-series, CBMS Regional Conf. Ser. in Math., No. 102, Amer. Math. Soc., Providence, RI, 2004. MR 2020489 (2005c:11053)
  • [27] K. Ono, D. Penniston, Congruences for $ {}_3F_2$ hypergeometric functions over finite fields, Illinois J. Math. 46 (2002), 679-684. MR 1951234 (2003m:11206)
  • [28] C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a $ K3$ surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176. MR 1184764 (94d:11044)
  • [29] SAGE Mathematical Software, http://www.sagemath.org
  • [30] W. Stein, The Modular Forms Database, http://sage.math.washington.edu/

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11T24, 11F11, 11L05, 33C20

Retrieve articles in all journals with MSC (2000): 11T24, 11F11, 11L05, 33C20


Additional Information

Ron Evans
Affiliation: Department of Mathematics 0112, University of California at San Diego, La Jolla, California 92093-0112
Email: revans@ucsd.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10091-6
Keywords: Hypergeometric functions over finite fields, Kloosterman sums, Gauss and Jacobi sums, Hecke eigenvalues, Hecke eigenforms, symmetric power, Kloosterman sheaf, Frobenius map
Received by editor(s): June 22, 2009
Published electronically: September 16, 2009
Communicated by: Ken Ono
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society