Hypergeometric evaluations over finite fields and Hecke eigenforms

Author:
Ron Evans

Journal:
Proc. Amer. Math. Soc. **138** (2010), 517-531

MSC (2000):
Primary 11T24; Secondary 11F11, 11L05, 33C20

DOI:
https://doi.org/10.1090/S0002-9939-09-10091-6

Published electronically:
September 16, 2009

MathSciNet review:
2557169

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the hypergeometric function over whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating at the argument . This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono's result by evaluating an infinite family of over in terms of Jacobi sums. Here we present five new over (involving characters of orders 3, 4, 6, and 8) which are conjecturally evaluable in terms of eigenvalues for Hecke eigenforms of weights 2 and 3. There is ample numerical evidence for these evaluations. We motivate our conjectures by proving a connection between and twisted sums of traces of the third symmetric power of twisted Kloosterman sheaves.

**[1]**S. Ahlgren, K. Ono, Modularity of a certain Calabi-Yau threefold, Monatsh. Math. 129 (2000), 177-190. MR**1746757 (2001b:11059)****[2]**S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212. MR**1739404 (2001c:11057)****[3]**B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, Wiley-Interscience, John Wiley & Sons, New York, 1998. MR**1625181 (99d:11092)****[4]**P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252. MR**601520 (83c:14017)****[5]**R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math., to appear.**[6]**R. J. Evans, J. Greene, Clausen's theorem and hypergeometric functions over finite fields, Finite Fields Appl. 15 (2009), 97-109. MR**2468995****[7]**R. J. Evans, J. Greene, Evaluations of hypergeometric functions over finite fields, Hiroshima Math. J. 39 (2009), 217-235.**[8]**R. J. Evans, F. Lam, Special values of hypergeometric functions over finite fields, Ramanujan J. 19 (2009), 151-162.**[9]**S. Frechette, K. Ono, M. Papanikolas, Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not. 2004, no. 60, 3233-3262. MR**2096220 (2006a:11055)****[10]**L. Fu, D. Wan, -functions for symmetric products of Kloosterman sums, J. Reine Angew. Math. 589 (2005), 79-103. MR**2194679 (2006k:11159)****[11]**L. Fu, D. Wan, Trivial factors for -functions of symmetric products of Kloosterman sheaves, Finite Fields Appl. 14 (2008), 549-570. MR**2401995 (2009c:11135)****[12]**L. Fu, D. Wan, -functions of symmetric products of the Kloosterman sheaf over , Math. Annalen 342 (2008), 387-404. MR**2425148****[13]**L. Fu, D. Wan, Functional equations of -functions for symmetric products of the Kloosterman sheaf, preprint.**[14]**J. Fuselier, Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, Ph.D. thesis, Texas A&M University, 2007.**[15]**J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), 77-101. MR**879564 (88e:11122)****[16]**K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), 263-289. MR**1874236 (2003b:11058)****[17]**H. Iwaniec, Topics in classical automorphic forms, Amer. Math. Soc., Providence, RI, 1997. MR**1474964 (98e:11051)****[18]**N. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies 116, Princeton University Press, Princeton, NJ, 1988. MR**955052 (91a:11028)****[19]**N. Katz, email communication, December 2005.**[20]**M. Koike, Hypergeometric series over finite fields and Apéry numbers, Hiroshima Math. J. 22 (1992), 461-467. MR**1194045 (93i:11146)****[21]**D. H. Lehmer, E. Lehmer, On the cubes of Kloosterman sums, Acta Arith. 6 (1960), 15-22. MR**0115976 (22:6773)****[22]**C. Liu, Twisted higher moments of Kloosterman sums, Proc. Amer. Math. Soc. 130 (2002), 1887-1892. MR**1896019 (2003a:11102)****[23]**R. Livné, Motivic orthogonal two-dimensional representations of , Israel J. Math. 92 (1995), 149-156. MR**1357749 (96m:11050)****[24]**E. Mortenson, Supercongruences for truncated hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. 133 (2005), 321-330. MR**2093051 (2005f:11080)****[25]**K. Ono, Values of Gaussian hypergeometric series, Trans. Amer. Math. Soc. 350 (1998), 1205-1223. MR**1407498 (98e:11141)****[26]**K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and -series, CBMS Regional Conf. Ser. in Math., No. 102, Amer. Math. Soc., Providence, RI, 2004. MR**2020489 (2005c:11053)****[27]**K. Ono, D. Penniston, Congruences for hypergeometric functions over finite fields, Illinois J. Math. 46 (2002), 679-684. MR**1951234 (2003m:11206)****[28]**C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176. MR**1184764 (94d:11044)****[29]**SAGE Mathematical Software, http://www.sagemath.org**[30]**W. Stein, The Modular Forms Database, http://sage.math.washington.edu/

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11T24,
11F11,
11L05,
33C20

Retrieve articles in all journals with MSC (2000): 11T24, 11F11, 11L05, 33C20

Additional Information

**Ron Evans**

Affiliation:
Department of Mathematics 0112, University of California at San Diego, La Jolla, California 92093-0112

Email:
revans@ucsd.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-10091-6

Keywords:
Hypergeometric functions over finite fields,
Kloosterman sums,
Gauss and Jacobi sums,
Hecke eigenvalues,
Hecke eigenforms,
symmetric power,
Kloosterman sheaf,
Frobenius map

Received by editor(s):
June 22, 2009

Published electronically:
September 16, 2009

Communicated by:
Ken Ono

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.