Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Removable sets for the flux of continuous vector fields


Authors: Sébastien de Valeriola and Laurent Moonens
Journal: Proc. Amer. Math. Soc. 138 (2010), 655-661
MSC (2000): Primary 49Q15; Secondary 35B60
Published electronically: October 6, 2009
MathSciNet review: 2557182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that any closed set $ E$ having a $ \sigma$-finite $ (n-1)$-dimensional Hausdorff measure does not support the nonzero distributional divergence of a continuous vector field; in particular it has the property that any $ C^1$ function in $ \mathbb{R}^n$ that is harmonic outside it is harmonic in $ \mathbb{R}^n$. We also exhibit a compact set $ E$ having Hausdorff dimension $ n-1$, supporting the nonzero distributional divergence of a continuous vector field yet having the property that any $ C^1$ function that is harmonic outside $ E$ is harmonic in $ \mathbb{R}^n$.


References [Enhancements On Off] (What's this?)

  • 1. Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
  • 2. Thierry De Pauw, On the exceptional sets of the flux of a bounded vectorfield, J. Math. Pures Appl. (9) 82 (2003), no. 9, 1191–1217. MR 2012808, 10.1016/S0021-7824(03)00060-6
  • 3. Thierry De Pauw, Laurent Moonens, and Washek F. Pfeffer.
    Charges in middle dimensions.
    J. Math. Pures Appl., to appear  (DOI 10.1016/j.matpur.2009.04.001), 2009.
  • 4. Thierry De Pauw and Washek F. Pfeffer, Distributions for which 𝑑𝑖𝑣𝑣=𝐹 has a continuous solution, Comm. Pure Appl. Math. 61 (2008), no. 2, 230–260. MR 2368375, 10.1002/cpa.20204
  • 5. Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • 6. P. Mattila and P. V. Paramonov, On geometric properties of harmonic 𝐿𝑖𝑝₁-capacity, Pacific J. Math. 171 (1995), no. 2, 469–491. MR 1372240
  • 7. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
  • 8. Laurent Moonens, Removable singularities for the equation 𝑑𝑖𝑣𝑣=0, Real Anal. Exchange 30th Summer Symposium Conference (2006), 125–132. MR 2323837
  • 9. Laurent Moonens.
    From Kurzweil-Henstock integration to charges in Euclidean spaces.
    Faculté des Sciences, École doctorale en Mathématique, Université catholique de Louvain. CIACO, Louvain-la-Neuve, 2008.
  • 10. Washek F. Pfeffer, Derivation and integration, Cambridge Tracts in Mathematics, vol. 140, Cambridge University Press, Cambridge, 2001. MR 1816996
  • 11. Nguyen Cong Phuc and Monica Torres, Characterizations of the existence and removable singularities of divergence-measure vector fields, Indiana Univ. Math. J. 57 (2008), no. 4, 1573–1597. MR 2440874, 10.1512/iumj.2008.57.3312
  • 12. Alex Ruiz de Villa and Xavier Tolsa.
    Characterization and semiadditivity of the $ {C}^1$ harmonic capacity.
    Preprint (available on arXiv:0812.2421), 2008.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 49Q15, 35B60

Retrieve articles in all journals with MSC (2000): 49Q15, 35B60


Additional Information

Sébastien de Valeriola
Affiliation: Département de Mathématique, Université catholique de Louvain, Chemin du Cyclotron, 2, 1348 Louvain-la-neuve, Belgium
Email: sebastien.devaleriola@uclouvain.be

Laurent Moonens
Affiliation: Département de Mathématique, Université catholique de Louvain, Chemin du Cyclotron, 2, 1348 Louvain-la-neuve, Belgium
Email: laurent.moonens@uclouvain.be

DOI: https://doi.org/10.1090/S0002-9939-09-10092-8
Received by editor(s): January 7, 2009
Received by editor(s) in revised form: June 10, 2009
Published electronically: October 6, 2009
Additional Notes: The second author is an aspirant of the Fonds de la Recherche scientifique — FNRS (Belgium).
Communicated by: Tatiana Toro
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.