Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global estimates in Orlicz spaces for the gradient of solutions to parabolic systems


Authors: Sun-Sig Byun and Seungjin Ryu
Journal: Proc. Amer. Math. Soc. 138 (2010), 641-653
MSC (2000): Primary 35K40, 35R05; Secondary 46E30, 46E35
DOI: https://doi.org/10.1090/S0002-9939-09-10094-1
Published electronically: October 5, 2009
MathSciNet review: 2557181
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find not only an optimal regularity requirement on the coefficients, but also a lowest level of regularity on the boundary for the global estimate of the gradient of a parabolic system in the setting of Orlicz spaces.


References [Enhancements On Off] (What's this?)

  • 1. E. Acerbi and G. Mingione, Gradient estimates for the $ p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. MR 2155087 (2006f:35068)
  • 2. E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2) (2007), 285-320. MR 2286632 (2007k:35211)
  • 3. R. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • 4. S. Byun, Optimal $ W^{1,p}$ regularity theory for parabolic equations in divergence form, J. Evol. Equ., 7 (3) (2007), 415-428. MR 2328932 (2008i:35108)
  • 5. S. Byun, Hessian estimates in Orlicz spaces for fourth-order parabolic systems in nonsmooth domains, J. Differential Equations, 246 (9) (2009), 3518-3234. MR 2515166
  • 6. S. Byun and L. Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math., 212 (2) (2007), 797-818. MR 2329320 (2008h:35131)
  • 7. S. Byun and L. Wang, $ W^{1,p}$ regularity for the conormal derivative problem with parabolic BMO nonlinearity in Reinfenberg domains, Discrete Contin. Dyn. Syst., 20 (3) (2008), 617-637. MR 2373207
  • 8. S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (8) (2008), 1851-1873. MR 2462578
  • 9. Luis A. Caffarelli and I. Peral, On $ W^{1,p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), no. 1, 1-21. MR 1486629 (99c:35053)
  • 10. G. Hong and L. Wang, A geometric approach to the topological disk theorem for Reifenberg, Pacific J. Math., 233 (2) (2007), 321-339. MR 2366379 (2008m:49203)
  • 11. P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. MR 631089 (83i:30014)
  • 12. D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2) (2007), 489-506. MR 2338417 (2008j:35031)
  • 13. V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ (1991). MR 1156767 (93g:42013)
  • 14. N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2) (2007), 521-558. MR 2352490 (2008f:35164)
  • 15. W. Orlicz, Uber eine gewisse Klasse von Raumen vom Typus B, Bull. Int. Acad. Polon. Sci. A, 8/9 (1932), 207-220.
  • 16. D. Palagachev, Quasilinear elliptic equations with $ VMO$ coefficients, Trans. Amer. Math. Soc., 347 (1995), 2481-2493. MR 1308019 (95k:35083)
  • 17. D. Palagachev and L. Softova, A priori estimates and precise regularity for parabolic systems with discontinuous data, Discrete Contin. Dyn. Syst., 13 (2005), 721-742. MR 2153140 (2006c:35120)
  • 18. M. Parviainen, Global higher integrability for parabolic quasiminimizers in nonsmooth domains, Calc. Var. Partial Differential Equations, 31 (1) (2008), 75-98. MR 2342615 (2009c:49073)
  • 19. M. Parviainen, Global gradient estimates for degenerate parabolic equations in nonsmooth domains, Ann. Mat. Pura Appl. (4), 188 (2) (2009), 333-358. MR 2491806
  • 20. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York (1991). MR 1113700 (92e:46059)
  • 21. E. Reinfenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. MR 0114145 (22:4972)
  • 22. T. Toro, Doubling and flatness: Geometry of measures, Notices Amer. Math. Soc., 44 (9) (1997), 1087-1094. MR 1470167 (99d:28010)
  • 23. L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the Poisson equation, Proceedings Amer. Math. Soc., 137 (2009), 2037-2047. MR 2480285
  • 24. F. Yao, Regularity theory in Orlicz spaces for the parabolic polyharmonic equations, Arch. Math. (Basel), 90 (5) (2008), 429-439. MR 2414246
  • 25. F. Yao, H. Jia, L. Wang and S. Zhou, Regularity theory in Orlicz spaces for the Poisson and heat equations, Commun. Pure Appl. Anal., 7 (2) (2008), 407-416. MR 2373223 (2009d:35023)
  • 26. F. Yao, Y. Sun and S. Zhou, Gradient estimates in Orlicz spaces for quasilinear elliptic equation, Nonlinear Anal., 69 (8) (2008), 2553-2565. MR 2446351
  • 27. F. Yao and S. Zhou, Linear second-order divergence equations in Lipschitz domains, J. Math. Anal. Appl., 344 (1) (2008), 491-503. MR 2416323 (2009e:35048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K40, 35R05, 46E30, 46E35

Retrieve articles in all journals with MSC (2000): 35K40, 35R05, 46E30, 46E35


Additional Information

Sun-Sig Byun
Affiliation: Department of Mathematics, Seoul National University, Seoul 151-747, Republic of Korea
Email: byun@snu.ac.kr

Seungjin Ryu
Affiliation: Department of Mathematics, Seoul National University, Seoul 151-747, Republic of Korea
Email: sjryu@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-09-10094-1
Keywords: Gradient estimate, Orlicz space, parabolic system, maximal function, covering lemma, Reifenberg domain
Received by editor(s): May 8, 2009
Published electronically: October 5, 2009
Additional Notes: This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-314-C00024).
Communicated by: Tatiana Toro
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society