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SOME REMARKS ON THE POINCARÉ-BIRKHOFF THEOREM

PATRICE LE CALVEZ AND JIAN WANG

(Communicated by Bryna Kra)

Abstract. We define the notion of a positive path of a homeomorphism of
a topological space. It seems to be a natural object to understand Birkhoff’s
arguments in his proof of the celebrated Poincaré-Birkhoff theorem. We write
the proof of this theorem, by using positive paths, and the proof of its general-
ization due to P. Carter. We will also explain the links with the free disk chains
introduced in the subject by J. Franks. We will finish the paper by studying
the local versions where the upper curve is not invariant and will explain why
this curve or its image must be a graph to get such a generalization.

0. Introduction

In 1913, Birkhoff [Bi1] proved a celebrated result, conjectured and proved in
special cases by Poincaré [P], that asserts that an area-preserving homeomorphism
of the closed annulus that satisfies some “twist condition” admits at least two fixed
points. Its proof used an index argument that was valid to find one fixed point
but was incorrect to get the second one. A small modification of the argument
was necessary, and Birkhoff corrected this minor error in a paper [Bi2] published
in 1925 (see also the well-detailed expository paper of Brown and Newman [BN]),
where he made some generalizations: the area-preserving hypothesis was replaced
by a topological intersection property, and the hypothesis about the invariance of
the annulus was weakened. A generalization of the Poincaré-Birkhoff theorem, with
a nicer intersection property, was obtained by Carter [C]. Looking at noninvariant
annuli, which are useful in the study of nonautonomous planar Hamiltonian systems
to show the existence of periodic orbits, further generalizations have been obtained
by Jacobowitz [J1], [J2], Ding [D] and other authors (see the paper of Dalbono and
Rebelo [DR] on the subject).

More recently, Franks introduced new ideas by giving a proof of the Poincaré-
Birkhoff theorem that uses Brouwer’s lemma on translation arcs (Kerékjártó already
observed the link between Brouwer’s theory and the Poincaré-Birkhoff theorem
[K]). His proof uses only the fact that the map has no wandering point, and the
twist property can be extended to other interesting situations. His ideas have been
developed by many authors.
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The goal of this paper is to introduce the notion of a positive path of a homeomor-
phism, which seems to be a natural object for understanding Birkhoff’s arguments.
In the first section we will give a proof of the (classical) Poincaré-Birkhoff theorem
using existence of positive paths that cross the annulus. In the second section we
will make a link with Franks’ ideas. We will recall a natural construction, in the
spirit of Franks’ ideas, and will observe that it permits us to obtain positive paths
that cross the annulus and so to get the Poincaré-Birkhoff theorem without the
help of Brouwer’s theory. This method stays valid to prove Carter’s theorem in the
case of an invariant annulus. We will see in the last section that the arguments
may be generalized in the situation where the annulus is not invariant, and so we
will give a new proof of Carter’s theorem in its generality.

1. Statement and proof of the Poincaré-Birkhoff theorem

In what follows, a path on a topological space X is a continuous map γ : I → X
defined on a segment I = [a, b] ⊂ R. The origin and the extremity of γ are
respectively γ(a) and γ(b). If X1 and X2 are two subsets of X, we will say that
γ joins X1 to X2 if its origin belongs to X1 and its extremity belongs to X2. The
restriction of γ to a compact interval J ⊂ I is a subpath of γ. If γ is one-to-one, γ
is an arc; if γ(a) = γ(b), it is a loop; if γ(a) = γ(b) and γ is one-to-one on [a, b),
it is a simple loop. The concatenation of two paths (when it is defined) is denoted
by γ1γ2. As is usually done, we often will not make any distinction between a path
and its image. In particular, if Y is a subset of X, we will write γ ⊂ Y if the image
of γ is included in Y .

We writeT1 = R/Z and we fix in this section and the next one a homeomorphism
F of A = T1 × [0, 1] homotopic to the identity and a lift f of F to the universal

cover Ã = R× [0, 1]. We suppose that f satisfies the boundary twist condition:

for every x ∈ R, p1 ◦ f(x, 0) < x < p1 ◦ f(x, 1),
where p1 : Ã → R is the first projection. We write Fix∗(F ) for the set of fixed
points of F that are lifted to fixed points of f . Let us state the Poincaré-Birkhoff
theorem.

Theorem 1. If F preserves the measure induced by dx ∧ dy, then �Fix∗(F ) ≥ 2.

Let us recall the ideas of Birkhoff. The vector field X̃ : z �→ f(z)−z is invariant
under the covering automorphism T : (x, y) �→ (x+ 1, y) and lifts a vector field X

on A whose singular set is exactly Fix∗(F ). If γ is a path in Ã \ Fix(f), one may
define the variation of angle

iγf =

∫
X̃◦γ

dθ,

where

dθ =
1

2π

xdy − ydx

x2 + y2

is the usual polar form on R2 \ {0}. The form dθ being closed can be integrated on
any (even nonsmooth) path in R2 \ {0}. The theorem will be proved if one finds a

loop Γ in Ã \ Fix(f) such that iΓ �= 0. Indeed if Fix∗(F ) is finite (equivalently if
Fix(f) is discrete), then

iΓf =
∑

z∈Fix(f)

i(X̃, z)

∫
ξz◦Γ

dθ,
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where i(X̃, z) denotes the Poincaré index of X̃ at z and ξz is the vector field

z′ �→ z′ − z. This implies that �Fix∗(F ) ≥ 2 because i(X̃, z) = i(X, π(z)) and
because the Poincaré-Hopf formula asserts that∑

z∈Fix∗(F )

i(X, z) = χ(A) = 0.

If we can find two paths γ and γ′ such that iγf = iγ′f �= 0, the first one
joining R× {0} to R × {1}, the second one joining R× {1} to R × {0}, then the
loop Γ = γδγ′δ′ obtained by adding horizontal segments on each boundary line
will satisfy iΓf = 2iγf �= 0. In [Bi1] Birkhoff composes F with a small vertical
translation to build such paths. Suppose that the displacement is positive, the
iterates by the perturbed map G of T1×{0} are pairwise disjoint, and they are not
all included in the annulus (because G also preserves the area). Birkhoff chooses an
arc α that joins a point z ∈ T1 × {0} to G(z) and by concatenation of the iterates
of α constructs an arc that joins T1 × {0} to T1 × {1} and that is lifted into an

arc γ satisfying iγf = −1

2
. We will give here a simple construction, in the spirit of

Birkhoff’s ideas, that does not need any perturbation and that is still valid under
a weaker hypothesis than the preservation of the area.

Definition 1. Let G be a homeomorphism of a topological space X. A positive
path of G is a path γ : I → X such that for every t, t′ in I,

t′ ≥ t ⇒ G(γ(t′)) �= γ(t).

Observe that a positive path γ does not meet the fixed point set, that any sub-
path of γ is positive and that the images Gk ◦ γ, k ∈ Z, are also positive.

Proposition 1. If γ is a positive path of f that joins a boundary line of Ã to the

other one, then iγf = −1

2
.

Proof. We write the proof in the case where γ joins R× {0} to R× {1}, the other
case being similar. The boundary of the simplex

∆ = {(t, t′) ∈ I2 | t′ ≥ t}
may be written ∂∆ = δdδhδv where δd is the diagonal, δh a horizontal segment and
δv a vertical one. The path γ being positive, the map

Φ : (t, t′) �→ f(γ(t′))− γ(t)

does not vanish on ∆, and one has∫
Φ◦δd

dθ +

∫
Φ◦(δhδv)

dθ =

∫
Φ◦∂∆

dθ = 0.

Observe now that the image by Φ of each segment δh and δv does not intersect the
vertical half-line {0} × (−∞, 0]. This implies that

iγf =

∫
Φ◦δd

dθ = −
∫
Φ◦(δhδv)

dθ = −1

2
. �

Recall that a wandering point of a homeomorphism f of a topological space X
is a point that admits a wandering neighborhood U , which means a neighborhood
U such that the fk(U), k ≥ 0, are pairwise disjoint. Recall that a Urysohn space
is a topological space such that two distinct points may be separated by closed
neighborhoods.
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Proposition 2. Suppose that X is a connected and locally path-connected Urysohn
space and that G is a fixed point free homeomorphism of X with no wandering point.
If Z ⊂ X satisfies G(Z) ⊂ Z, then for every z ∈ X there exists a positive path of
G that joins Z to z.

Proof. One must prove the equality Y = X, where Y is the set of points that may
be joined by a positive path of G whose origin belongs to Z. The space X being
connected, it is sufficient to prove that Y ⊂ Int(Y ). Fix z0 ∈ Y . By hypothesis,
one can find a path-connected neighborhood V of z0 such that V ∩G(V ) = ∅. We
will prove that V ⊂ Y .

The fact that z0 ∈ Y implies that there exists a positive path γ0 : I → X from Z
to V . The closures of the subsets J = γ−1

0 (V ) and J ′ = γ−1
0 (G(V )) do not intersect

because V ∩G(V ) = ∅. This implies that inf J �= inf J ′.
Suppose first that inf J < inf J ′ (this includes the case where J ′ = ∅). In that

case, there is a subpath γ1 of γ0 from Z to V that does not meet G(V ). For every
z ∈ V one can find a path γ inside V that joins the extremity z1 of γ1 to z. The
path γ2 = γ1γ is positive because γ1 is positive and G(γ) is disjoint both from γ
and γ1. This implies that z ∈ Y .

Suppose now that inf J ′ < inf J . In that case, there is a subpath γ1 of γ0 from
Z to G(V ) that does not meet V . We denote by z1 its extremity. The point G(z1)
does not belong to γ1 because this path is positive. The path being compact (X is
Hausdorff), one can find a path-connected neighborhood U ⊂ G(V ) of z1 such that
G(U) does not intersect γ1. The set U being nonwandering, one can find a point
z2 ∈ U whose positive orbit meets G−1(U) ⊂ V . Choose a path γ inside U that
joins z1 to z2. The path γ2 = γ1γ does not meet V and is positive because γ1 is
positive and G(γ) is disjoint from γ1 and γ. Let us consider the integer k ≥ 1 such

that Gk(γ2) ∩ V �= ∅ and Gk′
(γ2) ∩ V = ∅ if 0 ≤ k′ < k. Since G(Z) ⊂ Z, the path

Gk(γ2) is a positive path from Z to V that does not meet G(V ). We conclude as
in the first case. �

Remark 1. A classical result asserts that if γ : I → X is a path in a Hausdorff space
X, then there exists an arc γ′ : J → X joining the origin of γ to its extremity such
that for every couple (s, s′) ∈ J2 satisfying s < s′, there exists a couple (t, t′) ∈ I2

such that γ′(s) = γ(t), γ′(s′) = γ(t′) and t < t′. Therefore in Proposition 2,
one may replace path with arc in the conclusion. For the same reason a locally
path-connected space is locally arc-connected. In the case where X is “obviously”
arc-connected (e.g. if X is a manifold) one can get directly the improved version
of the theorem. In the proof above one may suppose that γ0, γ1 and γ are arcs.
To construct an arc γ2 joining Z to z2, one considers the “last point” z3 where γ
meets γ1. Then one concatenates the subpath of γ1 that joins its origin to z3 and
the subpath of γ that joins z3 to its extremity.

Remark 2. If one applies the proposition with Z equal to the positive orbit of a
point z, one gets a positive path from a point Gk′

(z), k′ ≥ 0, to G−1(z). Therefore,
for every point z one may find k < 0 and a positive arc that joins z to Gk(z) (of
course k �= −1).

Let us explain how to deduce Theorem 1 from Propositions 1 and 2.
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Proof of Theorem 1. One may suppose that Fix∗(F ) does not separate the two
boundary circles (otherwise �Fix∗(F ) = +∞). If n is large enough, the homeomor-
phism F ′ of the annulus A′ = R/nZ× [0, 1] lifted by f has no fixed points except
for the ones that are lifted to fixed points of f . Therefore Fix(F ′) = Fix∗(F

′)
does not separate the boundary circles of A′, and one may consider the connected
component W of A′ \ Fix(F ′) that contains the boundary. Moreover F ′ has no
wandering point because it preserves the area. Applying Proposition 2 to X = W ,
to G = F ′|W and to Z = R/nZ×{0} or Z = R/nZ×{1}, one constructs a positive
path of F ′ from one of the boundary circles of A′ to the other one. Such a path
is lifted to a positive path of f from the corresponding boundary line to the other
one. Theorem 1 follows from Proposition 1. �

Remark 3. One can prove that F ′ has no wandering point if it is the case for F .
Indeed, let T ′ be a generator of the (finite) group of automorphisms of the covering
space A′. The fact that F has no wandering point implies that for every nonempty
open set U ⊂ A′, there exists q ≥ 1 and p ∈ Z such that F ′q(U)∩ T ′p(U) �= ∅. Let
us fix a nonempty open set U0 ⊂ A′ and define a sequence (Uk)k≥0 of nonempty
open sets where Uk+1 may be written Uk+1 = F ′qk(Uk) ∩ T ′pk(Uk). One deduces
that for every k′ > k, one has Uk′ ⊂ F ′qk+...qk′−1(Uk) ∩ T ′pk+...pk′−1(Uk). One
can find k′ > k such that pk + · · · + pk′−1 = 0 (mod n). This implies that Uk

is nonwandering and therefore that U0 itself is nonwandering. So Theorem 1 is
valid if instead of supposing that F preserves the area, one supposes that F has
no wandering point. Anyway, instead of working in a finite cover of A, one can
prove directly that the conclusion of Proposition 2 occurs if X is the connected

component of Ã \ Fix(f) that contains the boundary, if G = f |X and if Z satisfies
f(Z) ⊂ Z and T (Z) = Z.

2. Links with Franks’ method

In [F1], Franks gave a proof of Theorem 1 valid in the case where F has no wan-
dering point and that uses the following result of Brouwer [Br] : if an orientation-
preserving homeomorphism g of R2 has a periodic point of period q ≥ 2, then one
can construct a loop Γ such that iΓg = 1. By a simple perturbation argument, he
observed that such a loop still exists if there exists a periodic free disk chain, which
means a family (Ur)r∈Z/nZ of pairwise disjoint free (i.e., disjoint from their image)
topological open disks such that for every r ∈ Z/nZ, one of the positive iterates of
Ur meets Ur+1. The facts that F has no wandering point and that f satisfies the
boundary twist condition permit him to construct such a chain under the condition
of finiteness of Fix∗(F ). A periodic free disk chain may be obtained under more
general twist conditions, which permits Franks to state very useful generalizations
of the Poincaré-Birkhoff theorem. We will recall now a natural construction for
getting periodic free disk chains and will observe that it gives positive paths that
cross the annulus.

Alternate proof of Theorem 1. Here again we suppose that Fix∗(F ) does not sep-
arate the two boundary circles and write W for the connected component of A \
Fix∗(F ) that contains the boundary. Let us consider a triangulation T = (σi)i∈I

of W . Subdividing some simplices if necessary, one may assume that each 2-cell σi

is free by f when lifted to Ã.
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Lemma 1. For every i, i′ in I, there exists a sequence (σik)0≤k≤l such that σi0 =
σi, σil = σi′ and f(σik) ∩ σik+1

�= ∅ if 0 ≤ k < l.

Proof. Fix i ∈ I and define a subset J ⊂ I by writing i′ ∈ J if there exists a sequence
(σik)0≤k≤l such that σi0 = σi, σil = σi′ and f(σik)∩σik+1

�= ∅ if 0 ≤ k < l. Observe
now that X =

⋃
i′∈J σi′ is a closed subset of W such that F (X) ⊂ IntW (X). This

implies that IntW (X) \ F (X) is a wandering open set. By hypothesis, one deduces
that F (X) = IntW (X). We deduce that X is a closed and open subset of W , which
implies by connectedness of W that it is equal to W . �

This transitivity property and the twist condition could permit us to construct
a periodic chain (σ̃ir)r∈Z/nZ of f made of distinct cells of the lifted triangulation
(σ̃i)i∈Ĩ . Guillou and Le Roux [L] observed that here again, one may find a loop Γ
such that iΓf = 1. We will see below how to construct a positive path from R×{0}
to R × {1}. We have found a sequence (σi)0≤i≤n of free closed disks of Ã whose
interiors are pairwise disjoint such that σ0 ∩ (R×{0}) �= ∅, σn ∩ (R×{1}) �= ∅ and
f(σi)∩σi+1 �= ∅ for every i ∈ {0, . . . , n−1}. Among all such sequences (the cells are
not necessarily cells of the triangulation), choose a sequence (σi)0≤i≤n for which
the integer n is the smallest possible (note that n ≥ 1 because of the boundary
twist condition) and observe that fk(σi) ∩ σj = ∅ if j > i + 1 and k ≥ 1. Indeed
suppose that

E = {(i, j, k) | j > i+ 1, k ≥ 1, fk(σi) ∩ σj �= ∅}
is not empty and define

i0 = min{i | there exist j > i+ 1, k ≥ 1 such that (i, j, k) ∈ E},
j0 = max{j > i0 + 1 | there exists k ≥ 1 such that (i0, j, k) ∈ E},
k0 = min{k ≥ 1 | (i0, j0, k) ∈ E}.

Observe now that the sequence

(fk0−1(σ0), . . . , f
k0−1(σi0), σj0 , . . . , σn)

satisfies the same properties as the sequence (σi)0≤i≤n, contradicting the minimality
of n. This minimality also implies that σ0 is the only disk that meets R× {0} and
that σn is the only disk that meets R× {1}.

The set
⋃

0≤i≤n f
n−i(σi) is connected and intersects the two boundary lines.

Choose a point z0 ∈ fn(σ0) ∩ (R × {0}), a point zn+1 ∈ σn ∩ (R × {1}) and for
every i ∈ {1, . . . , n} a point zi ∈ fn−i+1(σi−1) ∩ fn−i(σi). Then choose for every
i ∈ {0, . . . , n} an arc γi joining zi to zi+1 such that (γi \{zi, zi+1}) ⊂ Int(fn−i(σi)).
The path γ0γ1 . . . γn is positive. Indeed suppose that there exists z ∈ γj such that
f(z) ∈ γi, where i ≤ j. The fact that γj is free implies that i < j and that z �= zj if
i = j−1. The fact that fk(σi)∩σj = ∅ if j > i+1 and k ≥ 1 implies that i ≥ j−1
and that z �= zj+1 if i = j − 1 (indeed f(γj) ∩ γi ⊂ fn−j+1(σj) ∩ fn−i(σi)). But
if i = j − 1 and z �∈ {zj , zj+1}, then f(z) ∈ Int(fn−j+1(σj)) ∩ fn−j+1(σj−1) = ∅.
Therefore there is no such point z. �

A slight modification of the argument will give us the following result. The first
part of the theorem was already observed in [Bi2] and [K]. The second part is
Carter’s theorem [C] for an invariant annulus (see also [F2], [G1], [G2] for proofs
that use Brouwer’s theory). Recall that a simple loop in A is essential if it is not
null-homotopic.
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Theorem 2. If every essential simple loop meets its image by F , then �Fix∗(F ) ≥
1; if every essential simple loop meets its image by F in at least two points, then
�Fix∗(F ) ≥ 2.

Proof. Suppose that �Fix∗(F ) ≤ 1 and keep the same notation. Either there is
no positive arc from the lower boundary circle to the upper one or there is no
positive arc from the upper boundary circle to the lower one. Assume that we are
in the first case and instead of considering a triangulation of W start with a brick
decomposition B = (σi)i∈I . In this dual notion, the bricks are closed disks obtained
as the closures of the connected components of the complement in W of a locally
finite graph Σ whose vertices are locally the extremities of exactly three edges. Here
again, one decomposes each brick to get a brick decomposition with bricks that are

free when lifted to Ã. Define a subset J ⊂ I by writing i ∈ J if there exists a
sequence (σik)0≤k≤l such that σi0 ∩ T1 × {0}, σil = σj and f(σik) ∩ σik+1

�= ∅.
Here again X =

⋃
j∈J σj is a closed subset of W such that F (X) ⊂ IntW (X), and

one knows that X is neighborhood of T1 × {0} that does not intersect the upper
boundary (otherwise the previous proof will give us a positive path from T1 × {0}
to T1 × {1}). Moreover one knows that X is a subsurface with boundary of W
(every union of bricks of a brick decomposition has this property).

In the case where Fix∗(F ) = ∅, then ∂X is compact and may be written as a
disjoint union of finitely many simple loops. As ∂X separates the two boundary
lines, one of them must be essential. This essential loop is disjoint from its image
because F (∂X) ⊂ Int(X).

In the case where Fix∗(F ) = {z0}, then each connected component of ∂X that
is not a simple loop becomes a simple loop when one adds z0. Here again, even
if there may be infinitely many such loops, one of them must be essential because
∂X ∪{z0} separates the boundary circles. This implies the existence of an essential
simple loop that meets its image in fewer than two points. �

3. Local versions

We conclude with the versions of the Poincaré-Birkhoff theorem on noninvariant
annuli. We fix two essential simple loops C1 and C2 in T1 × (0,+∞) that project
injectively onto T1×{0}. We denote by Ai the closed annulus bounded by T1×{0}
and Ci and write Int(Ai) = Ai\Ci. We denote by C̃i, Ãi and Int(Ãi) the respective
preimages of Ci, Ai and Int(Ai) in the universal cover R× [0,+∞). We fix in this
section a homeomorphism F : A1 → A2 that preserves the orientation and leaves

invariant the circle T1 × {0} and a lift f : Ã1 → Ã2 that satisfies the following
twist condition:

z ∈ R× {0} ⇒ p1 ◦ f(z) < p1(z), z ∈ C̃1 ⇒ p1 ◦ f(z) > p1(z).

Here again we write Fix∗(F ) for the set of fixed points of F lifted to fixed points
of f .

The first result is the version of Theorem 1 on a noninvariant annulus when F
is supposed to be area-preserving. Under this condition, it is a particular case of
Ding’s theorem [D].

Theorem 3. Let us suppose that for every nonempty open set U ⊂ A1 (resp. U ⊂
A2), there exists n > 0 (resp. n < 0) such that fn(U) �⊂ A1 (resp. fn(U) �⊂ A2)
or fn(U) ∩ U �= ∅. Then �Fix∗(F ) ≥ 2.
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The second result is stronger; it is the most general version of Carter’s theorem
[C].

Theorem 4. If every essential simple loop in A1 meets its image by F , then
�Fix∗(F ) ≥ 1; if every essential simple loop in A1 meets its image by F in at least
two points, then �Fix∗(F ) ≥ 2.

As in section 1, if we can find two paths γ and γ′ in Ã1\Fix(f) such that iγf and

iγ′f both belong to (− 3
4 ,−

1
4 )—the first one joining R× {0} to C̃1, the second one

joining C̃1 to R × {0}—then the loop Γ = γδγ′δ′ obtained by adding “segments”

of C̃1 and R × {0} will satisfy iΓf = −1 and we will deduce as in section 1 that
�Fix∗(F ) ≥ 2.

Let us begin with the following results.

Lemma 2. If there is a positive path γ of f in Ã1 whose origin is on R×{0} such

that f ◦ γ is not included in Int(Ã1), then there is a positive path γ′ in Ã1 joining

R× {0} to C̃1 such that the image of its extremity does not belong to Int(Ã1). We

obtain a similar result by replacing f with f−1 and C̃1 with C̃2.

Lemma 3. If γ is a positive path of f in Ã1 joining R× {0} to C̃1 such that the

image of its extremity does not belong to Int(Ã1), then iγf ∈ (− 3
4 ,−

1
4 ). Similarly,

if γ is a positive path of f−1 in Ã2 joining R × {0} to C̃2 such that the inverse

image of its extremity does not belong to Int(Ã2), then if−1γf ∈ ( 14 ,
3
4 ).

Proof of Lemma 2. Suppose that γ ∈ Ã1 is a positive path of f whose origin is on

R × {0} and such that f ◦ γ �⊂ Int(Ã1). Taking a subpath if necessary, one may

suppose that the extremity z of f(γ) does not belong to Int(Ã1). Since C1 projects

injectively on T1 × {0}, the vertical arc γv joining z to C̃2 does not intersect Ã1 if

z �∈ C̃1 and intersects Ã1 only at z if z ∈ C̃1. This implies that γ′ = γf−1(γv) is a

positive path in Ã1 joining R×{0} to C̃1 and that the image by f of its extremity

does not belong to Int(Ã1). �

Proof of Lemma 3. Let γ ∈ Ã1 be a positive path of f joining R× {0} to C̃1 such

that the image of its extremity does not belong to Int(Ã1). We keep the same
notation as in Proposition 1. The map Φ does not reach the vertical {0}× (−∞, 0],

either on δv or on δh. This implies that iγf ∈ (− 3
4 ,−

1
4 ). Similarly, if γ ∈ Ã2 is

a positive path of f−1 whose origin is on R × {0} and such that f−1 ◦ γ is not in

Int(Ã2), then one has if−1(γ)f = iγf
−1 ∈ ( 14 ,

3
4 ). �

Proof of Theorem 3. More precisely, in the case where Fix∗(F ) does not separate
the two boundary components of A1, we will prove the existence of a positive path

of f that joins R × {0} to C̃1 such that the image by f of its extremity is not

in Int(Ã1), and of course we will get a similar result with f−1 instead of f and

Ã2 instead of Ã1. Taking a finite cover of A1 if necessary, one may suppose that
Fix∗(F ) = Fix(F ) and write W = A1 \ Fix(F ).

Now look at the proof of Proposition 2 in the case where X = W , G = F |W and
Z = T1×{0} and keep the same notation (it makes sense to define the neighborhood
V ⊂ W ). The first situation is similar, and we conclude that V ⊂ Y . In the second
situation, if F (z1) �∈ Int(A1), we are done by Lemmas 2 and 3. If not, U can
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be defined similarly, and by hypothesis the point z2 can be chosen such that its
positive orbit either meets F−1(V ) or is not included in Int(A1). If one of the
positive iterates of γ2 is not included in Int(A1), then we conclude using Lemmas
2 and 3; otherwise the argument is similar to the one in Proposition 2, and we
conclude that V ⊂ Y . Note now that if Y = W , we can find a positive arc γ of F in
A1 from T1×{0} to C1 such that F ◦γ is not in Int(A1). Otherwise A2 ⊂ Int(A1),
which contradicts the hypothesis. �

Proof of Theorem 4. We suppose that Fix∗(F ) < 2. Replacing f with f−1 if nec-

essary, let us assume that there is no positive path that joins R × {0} to C̃1 such

that the image by f of its extremity is not in Int(Ã1). This implies that there is

no sequence (δi)0≤i≤n of free closed disks of Ã1 \ Fix(f) whose interiors are pair-

wise disjoint such that δ0 ∩ (R × {0}) �= ∅, f(δn) �⊂ Int(Ã1) and f(δi) ∩ δi+1 �= ∅
for every i ∈ {0, . . . , n − 1}. Indeed if n is minimal among such sequences, then

fk(δi) ⊂ Int(Ã1) for every integer k ≥ 1, if 0 ≤ i < n, and the positive iterates
of δi are all defined. So the argument of section 2 is still valid: one knows that

fk(δi)∩δj = ∅ if j > i+1 and k ≥ 1. Choose zn+1 ∈ δn such that f(zn+1) �∈ Int(Ã1)

and do the same construction as in section 2. We will get a positive path in Ã1

whose origin is on R × {0} such that its image by f is not included in Int(Ã1).
This would contradict Lemma 2.

Let us consider now a brick decomposition of W = A1\Fix∗(F ) whose bricks are

free when lifted to Ã1 and define a set J ⊂ I by the same formula as in the proof
of section 2. By the remark just above, one knows that f(δj) ⊂ Int(A1) for every
j ∈ J . We deduce that the subsurface X =

⋃
j∈J δj satisfies F (X) ⊂ IntW (X), and

we can conclude as in the proof of Theorem 2. �

Remark 4. We have used the fact that the loops C1 and C2 project injectively onto
T1 × {0} only in the proofs of Lemma 2 and Lemma 3. As we will see below,
these lemmas are still valid if one of the loops C1 or C2 projects injectively onto
T1 × {0}. Therefore, both Theorems 3 and 4 are still valid under this weaker
assumption. This was already known ([D], [G1]). The proof of Lemma 2 is valid

without any assumption on C1 and C2: one may find an arc γv from z to C̃2

included in Ã2 that does not meet Ã1 if z �∈ C̃1 and that meets Ã1 only at z if

z ∈ C̃1 (but it will not necessarily be vertical if C1 does not project injectively on
T1 × {0}).

The first statement of Lemma 3 is valid if C1 projects injectively on T1 × {0}
with exactly the same proof. Due to the symmetry of the problem, we still have
to prove that the first statement of Lemma 3 is also true if C2 projects injectively

on T1 × {0}. Let γ : [0, 1] → Ã1 be a positive path satisfying the hypothesis of
the lemma. Modifying γ in the uniform topology (the property of being positive is
obviously stable by perturbation), one may suppose that γ(t) �∈ R × {0} if t �= 0

and γ(t) �∈ C̃1 if t �= 1. One cannot compute iγf directly using the arguments
of Proposition 1. Indeed the map Φ does not reach the vertical {0} × (−∞, 0] on

δv, but it may reach it on δh. One needs an indirect argument. Write C̃2 as the
graph of a continuous function ϕ : R → (0,+∞) and define, for every r ∈ R, the
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homeomorphism

Tr : Ã2 → Ã2,

(x, sϕ(x)) �→ (x+ r, sϕ(x+ r)),

where s ∈ [0, 1]. Then consider the map

Ψ : ∆× [0,+∞[ → R2,

(t, t′, r) �→ T−(1−t′)r ◦ f(γ(t′))− f−1 ◦ T−r ◦ f(γ(t)).

This map may vanish on ∆×[0,+∞[. However, observe that Ψ(t, 1, r) �= 0 if t �= 1

(because f(γ(1)) �∈ Int(Ã1) and f−1 ◦ T−r ◦ f(γ(t)) ∈ Int(Ã1)), that Ψ(0, t′, r) ∈
R × (0,+∞) if t′ �= 0 (because γ(t′) �∈ R × {0}), that Ψ(0, 0, r) ∈ (−∞, 0) × {0}
(because of the twist condition on the lower boundary), that Ψ(1, 1, r) ∈ (0,+∞)×
R (because of the twist condition on the upper boundary) and finally that there
exists r0 ≥ 0 such that Ψ(t, 1, r) ∈ (0,+∞)×R if r ≥ r0 (for obvious reasons).

'
hδ

t

'tr

0r

o
dδ

+δ

−δ

'
vδ

Figure 1. Integral illustration

Write (see Figure 1)

- δd for the segment joining (0, 0, 0) to (1, 1, 0);

- δ+ for the segment joining (1, 1, 0) to (1, 1, r0);

- δ′h for the segment joining (1, 1, r0) to (0, 1, r0);

- δ′v for the segment joining (0, 1, r0) to (0, 0, r0);

- δ− for the segment joining (0, 0, r0) to (0, 0, 0).

Observe that the loop δdδ+δ
′
hδ

′
vδ− bounds a disk where Ψ does not vanish. This

implies that

iγf =

∫
Ψ◦δd

dθ = −
∫
Ψ◦(δ+δ′hδ

′
vδ−)

dθ,

but the last integral belongs to ( 14 ,
3
4 ) because Ψ does not reach the vertical {0} ×

(−∞, 0] on δ+δ
′
hδ

′
vδ−.

Lemma 3 may fail if none of the loops project injectively onto T1 × {0}, unlike
what is said in [D] and [J1], and then Theorems 3 and 4 are no longer valid (see
also [MU]). We will conclude with the construction of an area-preserving and fixed
point free homeomorphism satisfying a twist condition.

Let us consider the polygon Π whose vertices are (see Figure 2)

P = (1, 0), A = (1, 1), B = (
1

2
, 1), T−1(A) = (0, 1), T−1(P ) = (0, 0),
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B
D

Q

C

(Q)T 1

(C)T 1

(A)T 1

(P)T 1

*

A

P

Figure 2. The construction of f0

and the polygon Π∗ whose vertices are

Q = (
3

4
, 0), C = (

3

4
,
3

4
), D = (

1

4
,
5

4
), T−1(C) = (−1

4
,
3

4
), T−1(Q) = (−1

4
, 0).

The bounded domains U and U∗ enclosed by Π and Π∗ having the same area, the
piecewise affine map from Π to Π∗, sending P on Q, A on C, B on D, T−1(A) on
T−1(C), T−1(P ) on T−1(Q) and affine on each edge of Π, may be extended to an

area-preserving homeomorphism from U to U
∗
(this is a consequence of Schoenflies

theorem and of a classical result of Oxtoby-Ulam about topologically equivalent
measures; see for example the appendix of [BCL]). This homeomorphism may be
naturally extended to an area-preserving homeomorphism

f0 : Ã1 =
⋃
k∈Z

T k(U) = R× [0, 1] → Ã2 =
⋃
k∈Z

T k(U
∗
)

that commutes with T . Let us fix ε ∈ (0, 1) and M > 0 such that{
p1 ◦ f0(z) < p1(z) for every z ∈ R× [1− ε, 1];
p1 ◦ f0(z) < p1(z) +M for every z ∈ R× [0, 1].

The map

f1 : (x, y) �→ f0

(
x+

M

ε
(y − 1), y

)
coincides with f0 on R × {1}, is a translation on R × {0}, preserves the area,
commutes with T and satisfies

p1 ◦ f1(z) < p1(z) for every z ∈ R× [0, 1].

As a consequence f1 has no fixed point. Observe that it sends E = ( 34 , 1) on B and

F = ( 14 , 1) on T−1(A).
Now, let us consider (see Figure 3) :

-- the polygon Π1 whose vertices are A, E, B, C;

-- the polygon Π2 whose vertices are B, D, T−1(A), F ;

-- the polygon Π3 whose vertices are Q, C, B, F , T−1(A), T−1(C), T−1(Q);

and write Ui for the bounded domain enclosed by Πi.

Similarly let us consider

-- the polygon Π′
1 whose vertices are A′, E′, B′, C ′;

-- the polygon Π′
2 whose vertices are B′, D′, T−1(A′), F ′;

-- the polygon Π′
3 whose vertices areQ

′, C ′, B′, F ′, T−1(A′), T−1(C ′), T−1(Q′),



714 PATRICE LE CALVEZ AND JIAN WANG

y =1

Q′
y =0

B′
E′

D′

F′

A′
C′

B y =1

D

y = 0
Q

A

C

E

F ......

..................

(Q)T 1−

(C)T 1−

(A)T 1−

)(A′T 1−

)′(CT 1−

)(Q ′T 1−

1∏
2∏

3
∏

′1
∏

2∏

3
∏ ′

′

Figure 3. The construction of h

where A′ = ( 98 ,
35
64 ), B

′ = (− 3
4 ,

93
64 ), C

′ = ( 54 ,
29
64 ), D

′ = (− 1
8 ,

47
64 ), E

′ = (− 7
8 ,

99
64 ),

F ′ = (− 1
2 ,

81
64 ), Q

′ = ( 54 , 0). The bounded domains U ′
1, U

′
2, U

′
3 enclosed respectively

by Π′
1, Π

′
2, Π

′
3 are pairwise disjoint, and a simple computation gives us

µ(U ′
1) = µ(U ′

2) = µ(U1) = µ(U2) =
1

16
, µ(U ′

3) = µ(U3) =
7

8
.

Note that the second coordinate of the middle point of the diagonals of Π′
1 and Π′

2

is 1.
The piecewise affine map

⋃
1≤i≤3 Πi→

⋃
1≤i≤3 Π

′
i sending each vertex X on the

vertex X ′ may be extended first to an area-preserving homeomorphism
⋃

1≤i≤3 Ui

→
⋃

1≤i≤3 U
′
i and then to an area-preserving homeomorphism

h :
⋃
k∈Z

T k(
⋃

1≤i≤3

Ui) →
⋃
k∈Z

T k(
⋃

1≤i≤3

U ′
i)

that commutes with T . The homeomorphism

f2 : h ◦ f1 ◦ h−1 : h(Ã1) → h(Ã2)

preserves the area, commutes with T and is fixed point free. Nevertheless it satisfies
the twist condition. Indeed one has p1 ◦ f2(z) = p1 ◦ f1(z) < p1(z) for every

z ∈ R×{0} and p1(f2(z)) > p1(z) for every z on the upper boundary C̃1 of h(Ã1).
Indeed, the last property is true for each vertex A′, E′, B′, F ′, T−1(A′) (respectively
sent onto C ′, B′, D′, T−1(A′), T−1(C ′)), and the map is affine between two vertices.

To get a smooth example, one considers a smooth essential simple loop C ′
1 ⊂

π(h(Ã1)) very close to C1 = π(C̃1). Then, on the annulus bounded by T1 × {0}
and C ′

1, one approximates the diffeomorphism F2 lifted by f2 by a smooth area-
preserving diffeomorphism.
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