Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the Buchsbaum-Rim multiplicity of a parameter module


Authors: Futoshi Hayasaka and Eero Hyry
Journal: Proc. Amer. Math. Soc. 138 (2010), 545-551
MSC (2000): Primary 13H15; Secondary 13D25
DOI: https://doi.org/10.1090/S0002-9939-09-10119-3
Published electronically: September 29, 2009
MathSciNet review: 2557171
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove that the Buchsbaum-Rim multiplicity $ e(F/N)$ of a parameter module $ N$ in a free module $ F=A^r$ is bounded above by the colength $ \ell_A(F/N)$. Moreover, we prove that once the equality $ \ell_A(F/N)=e(F/N)$ holds true for some parameter module $ N$ in $ F$, then the base ring $ A$ is Cohen-Macaulay.


References [Enhancements On Off] (What's this?)

  • 1. W. Bruns and U. Vetter, Length formulas for the local cohomology of exterior powers, Math. Z. 191 (1986), 145-158. MR 812608 (87c:13016)
  • 2. W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math., 1327, Springer-Verlag, Berlin-Heidelberg, 1988. MR 953963 (89i:13001)
  • 3. D. A. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. in Math. 18 (1975), 245-301. MR 0396528 (53:391)
  • 4. D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex, Bull. Amer. Math. Soc. 69 (1963), 382-385. MR 0148720 (26:6226)
  • 5. D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224. MR 0159860 (28:3076)
  • 6. D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. III. A remark on generic acyclicity, Proc. Amer. Math. Soc. 16 (1965), 555-558. MR 0177020 (31:1285)
  • 7. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • 8. D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. 7 (1974), 523-530. MR 0337939 (49:2708)
  • 9. D. Kirby, On the Buchsbaum-Rim multiplicity associated with a matrix, J. London Math. Soc. (2) 32 (1985), no. 1, 57-61. MR 813385 (87d:13025)
  • 10. D. Kirby, Generalized Koszul complexes and the extension functor, Comm. Algebra 18 (1990), no. 4, 1229-1244. MR 1059948 (91e:13015)
  • 11. A. G. Rodicio, On the rigidity of the generalized Koszul complexes with applications to Hochschild homology, J. Algebra 167 (1994), no. 2, 343-347. MR 1283291 (95e:13011)
  • 12. J-P. Serre, Local Algebra (translated from the French by CheeWhye Chin), Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg, 2000. MR 1771925 (2001b:13001)
  • 13. J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1986. MR 881220 (88h:13011a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13H15, 13D25

Retrieve articles in all journals with MSC (2000): 13H15, 13D25


Additional Information

Futoshi Hayasaka
Affiliation: Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214–8571, Japan
Email: hayasaka@isc.meiji.ac.jp

Eero Hyry
Affiliation: Department of Mathematics and Statistics, University of Tampere, 33014 Tampereen yliopisto, Finland
Email: Eero.Hyry@uta.fi

DOI: https://doi.org/10.1090/S0002-9939-09-10119-3
Keywords: Buchsbaum-Rim multiplicity, parameter module, Euler-Poincar\'e characteristic, generalized Koszul complex
Received by editor(s): August 17, 2008
Received by editor(s) in revised form: July 14, 2009
Published electronically: September 29, 2009
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society