Let M be a closed C^{k+1}-manifold, $1 \leq k < \infty$. Given a C^k-Riemannian metric g on M we know that the space of C^{k+1}-diffeomorphisms that preserve g (i.e. the isometries of (M, g)) with the C^0-topology is compact [8]. In our study of the space of negatively curved metrics ([3], [4], [5], [6]) we have had to deal with the behavior of diffeomorphisms that “almost” preserve a Riemannian metric “up to order k.” Even though it has been mentioned sparsely in the literature that “quasi-isometries are pre-compact” (see for instance section 12.55 of Besse’s book [1, p. 253]) we have not found a precise presentation (definitions, statements and proofs) that includes the C^k cases. We believe it is useful to have such a presentation, and in this short paper we aim to give one.

First we introduce some notation and definitions. The space of C^k-Riemannian metrics on M, with the C^k-topology, will be denoted by $\mathcal{MET}^{C^k}(M)$, or simply by $\mathcal{MET}(M)$. The spaces of C^k-self maps and C^k-self-diffeomorphisms of M, with the C^k-topology, will be denoted by $C^k(M, M)$ and $DIFF^{k}(M, M)$. Recall that $\mathcal{MET}(M)$ is an open set in the normed vector space of all C^k-symmetric two-tensors on M. Hence the notion of a set $A \subset \mathcal{MET}(M)$ being C^k-bounded is well-defined. In fact it is equivalent to saying the set of all matrix entries of the chart representative (with respect to a fixed finite set of charts) of all elements of A is bounded up to order k. Similarly, the notion of $F \subset C^k(M, M)$ being C^k-bounded is well-defined (see item 2 below).

Remarks. (1) A technical point here. The fixed set of charts $\mathcal{A} = \{(U, \phi)\}$ mentioned above has to have the following property. Every chart (U, ϕ) can be extended to a chart (V, ϕ), with $\bar{U} \subset V$, \bar{U} compact. In what follows we assume that a finite set of charts with this property has been given.

(2) $F \subset C^k(M, M)$ is C^k-bounded if the set of representatives of all $f : U_1 \cap f^{-1}(U_2) \to U_2$, $f \in F$, $(U_1, \phi_1), (U_2, \phi_2) \in \mathcal{A}$, is bounded up to order k.

(3) The definition of C^k-boundedness (in both cases) does not depend on the choice of the set of charts.
We say that $A \subset \mathcal{MET}(M)$ has volume forms away from zero if the set of positive numbers

$$\left\{ \det(a_{ij}^\alpha)(x), a \in A, \alpha = (U, \phi) \in \mathcal{A}, x \in \phi(U) \right\}$$

is bounded away from zero, where (a_{ij}^α) is the local coordinate expression of $a \in A$ with respect to α. Note that this implies that the set of entries of all $(a_{ij}^\alpha(x))^{-1}$ is bounded, provided A is C^0-bounded. We say that $A \subset \mathcal{MET}(M)$ is C^k-well-bounded if it is C^k-bounded and has volume forms away from zero.

Let $g, h \in \mathcal{MET}^{C^k}(M)$. A set $F \subset \text{DIFF}^{k+1}(M)$ is a C^k-quasi-isometry set with respect to g, h if the sets $\{ f^* h, f \in F \}$ and $\{ f^* g, f \in F \}$ are C^k-well-bounded. More generally, a set $F \subset \text{DIFF}^{k+1}(M)$ is a C^k-quasi-isometry set if there are C^k-well-bounded sets $A, B \subset \mathcal{MET}^{C^k}(M)$, such that for every $f \in F$ there is $a \in A$ with $f_* a \in B$. Clearly F is a C^k-quasi-isometry set if it is a C^k-quasi-isometry set with respect to some g and h. It is a consequence of Theorem A below that the first definition is independent of the metrics g and h and is equivalent to the second definition.

Remark. Let F be a C^k-quasi-isometry set. Then any subset of F is a C^k-quasi-isometry set. Also $F^{-1} = \{ f^{-1}, f \in F \}$ is a C^k-quasi-isometry set.

Here is our main theorem.

Theorem A. C^k-quasi-isometry sets are pre-compact in $\text{DIFF}^k(M)$, $k \geq 0$.

If F is C^{k+1}-bounded, then it is also C^k-bounded and, since the set of k-derivatives of the elements of $f \in F$ is bounded, these elements are Lipschitz (with the same constant); hence this set is equicontinuous. The Arscia-Ascoli theorem implies then the following:

Lemma. Let $F \subset C^{k+1}(M, M)$ be C^{k+1}-bounded. Then F is pre-compact in $C^k(M, M)$.

Using the lemma above, the proof of Theorem A is reduced to proving:

Theorem B. C^k-quasi-isometry sets are C^{k+1}-bounded.

Remarks. (1) Theorem A implies that the definition of C^k-quasi-isometry set with respect to two metrics g, h does not depend on g, h.

(2) Rigorously, Theorem B implies that C^k-quasi-isometry sets are pre-compact in $C^k(M, M)$. But, using the remark before the statement of Theorem A, it is straightforward to check that they are actually pre-compact in $\text{DIFF}^k(M)$.

The proof of Theorem B implies (and, essentially reduces to) the following interesting fact. Let f be a diffeomorphism between open sets of \mathbb{R}^n. Let $Df(x) = \left(\frac{\partial f_i}{\partial x_j}(x) \right)$ be its Jacobian matrix at x. Assume: (i) the entries of $Df^T(x)Df(x)$ are bounded up to order k, and (ii) $\det Df(x)$ is bounded away from zero. Then the entries of $Df(x)$ are bounded up to order k. Note that it is important to assume that the map $x \mapsto Df(x)$ has for images Jacobian matrices; otherwise the result fails: let $x \mapsto C(x) \in O(n)$ be any wild function, but we have that $C^T(x)C(x)$ is constant.

Proof of Theorem B. Let $F \subset \text{DIFF}^{k+1}(M)$ be a C^k-quasi-isometry set. Let A and B be C^k-well-bounded sets such that for every $f \in F$, there is $a \in A$ with
$f, a \in B$. In what follows the local representatives of $f \in F$, $a \in A$ and $b \in B$ will be denoted by the same letters. Also, for $f \in F$, $Df(x) = \left(\frac{\partial f}{\partial x_i}(x) \right)$ denotes the Jacobian matrix of (a local representative of) f. Then, for $f \in F$ there are $a \in A$, $b \in B$ such that:

$$\begin{align*}
Df(x)^T a(x) Df(x) &= b(x) \\
\text{for every } x \in \phi(U), (U, \phi) \in \mathcal{A}. \text{ We now proceed to verify Theorem B by induction on } k \text{ starting with the special case } k = 0. \text{ Let } c(x) \text{ be the (unique and smoothly defined) square root of } a(x). \text{ Then}
\end{align*}$$

$$\begin{align*}
\left(c(x) Df(x) \right)^T \left(c(x) Df(x) \right) &= b(x)
\end{align*}$$

Since the diagonal entries of this matrix are the norm of the columns of $c(x)Df(x)$ and the entries of $b(x)$ are bounded, we have that the entries of $c(x)Df(x)$ are also bounded. But the entries of $c^{-1}(x)$ are bounded since $\det c(x) = \sqrt{\det a(x)}$ is bounded away from zero. We therefore conclude that the entries of $Df(x)$ are bounded, thus proving the theorem when $k = 0$. Interchanging the sets A and B in the above argument, we obtain also that the $||Df^{-1}||'$'s are bounded as well.

Proceeding with the induction we assume $k > 0$ and that all derivatives of order $\leq k$ of all f's are bounded. We prove that all derivatives of order $k+1$ are also bounded by contradiction. Suppose F is not C^{k+1}-bounded. Then there are sequences (f_m) in F and (x_m) in M such that some $k+1$ derivative of f_m, at x_m, becomes large as $m \to \infty$. Since M is compact and (f_m) is pre-compact in $C^0(M, M)$ we can assume that both sequences converge. It follows that there are two charts, $\psi : V' \to V \subset \mathbb{R}^n$, $\psi' : W' \to W \subset \mathbb{R}^n$, such that $f_m(V) \subset W$ and some $k+1$ derivative of $f_m : V \to W$ becomes large as $m \to \infty$. (The charts ψ, ψ' are not necessarily in \mathcal{A} but can be extended to charts in \mathcal{A}.) We have reduced our problem to \mathbb{R}^n.

For a j-multi-index $\alpha = (i_1, \ldots, i_j)$, $1 \leq i_t \leq n$ (i.e. $\alpha \in \{1, 2, \ldots, n\}^j$), we write $\partial x_{\alpha} = \partial x_{i_1} \cdots \partial x_{i_j}$. If α and β are multi-indices, $\alpha \beta$ denotes the “concatenation” multi-index. Also a 1-multi-index (i) will be denoted just as i. Let α be a k-multi-index. Applying $\frac{\partial^k}{\partial x_\alpha}$ to equation (1) above we get:

$$\begin{align*}
\left[Df^T \ a \left(\frac{\partial^k}{\partial x_\alpha}(Df) \right) \right] + \left[\frac{\partial^k}{\partial x_\alpha}(Df) \right]^T a Df \ + \ d = \frac{\partial^k}{\partial x_\alpha} b,
\end{align*}$$

where d is a sum of products of derivatives of order $\leq k$ of a and f. Hence the expression inside the brackets is bounded. Note that the columns of Df are $f_i = \frac{\partial}{\partial x_i} f$, that is, $Df = [f_1 \cdots f_n]$. To simplify our notation, for a multi-index β we write $f_\beta = \frac{\partial^k}{\partial x_\beta} f$. Using this notation, the equations above tell us that the following set of expressions is uniformly bounded:

$$\begin{align*}
f_i^T a f_{\alpha j} \ + \ f_j^T a f_{\alpha i}
\end{align*}$$

for all $1 \leq i, j \leq n$ and every $\alpha \in \{1, \ldots, n\}^j$. Note that the second term in (2) is obtained from the first term by interchanging i and j.

Claim. The fact that the expressions in (2) are bounded implies that the following expressions are bounded for every $\beta \in \{1, \ldots, n\}^{k+1}$:

$$\begin{align*}
(Df)^T a f_\beta.
\end{align*}$$
Since the Df^{-1}'s and a^{-1}'s are bounded, we conclude that the expressions $f_\beta = \frac{\partial^{k+1}}{\partial x^\beta} f$ are bounded. This contradicts our assumption that “some $k+1$ derivative of $f_m : V \to W$ becomes large as $m \to \infty$”, and hence proves Theorem B once we verify the claim.

Proof of the claim. To simplify our notation we denote the expression $f^T a f_\beta$ as simply $[i, \beta]$. Note that the i-th entry of the column vector $Df^T a f_\beta$ is $[i, \beta]$. Therefore to prove the claim we need to show that $[i, \beta]$ is bounded, for every i and every $(k+1)$-multi-index β. Note that our argument above proving Theorem B for $k = 0$ also proved the claim for $k = 0$. Hence we may assume that $k > 0$. Now, with the bracket notation introduced above, the bounded expression in (2) can be rewritten as:

$$(2') \quad [i, \alpha j] + [j, \alpha i]$$

That is, the expression in (2’) is bounded for every i, j and k-multi-index α. Since $k+1 \geq 2$, we can write $\beta = \gamma s t$ for some $(k-1)$-multi-index γ and $1 \leq s, t \leq n$. By cyclically permuting i, s, t and applying the fact that (2’) is bounded, we obtain that the following three expressions are bounded:

$$[i, \gamma st] + [t, \gamma si]$$
$$[s, \gamma ti] + [i, \gamma ts]$$
$$[t, \gamma is] + [s, \gamma it].$$

Notice that only three numbers occur in these three sums, namely:

$$A = [i, \gamma st] = [i, \gamma ts]$$
$$B = [s, \gamma ti] = [s, \gamma it]$$
$$C = [t, \gamma is] = [t, \gamma si].$$

Therefore the above three bounded terms become:

$$A + C$$
$$A + B$$
$$B + C.$$

Consequently all three terms A, B, and C are bounded. This completes the proof of the claim because $A = [i, \beta]$.

Remark. The above proof is formally similar to that given for the Fundamental Lemma of Riemannian Geometry, i.e. for the construction of the Levi-Civita connection (see, for instance, pp. 48-49 of [7]).

References

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAMTON, NEW YORK 13902

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAMTON, NEW YORK 13902