Continuity in separable metrizable and Lindelöf spaces

Authors:
Chris Good and Sina Greenwood

Journal:
Proc. Amer. Math. Soc. **138** (2010), 577-591

MSC (2000):
Primary 37B99, 54A10, 54B99, 54C05, 54D20, 54D65, 54H20; Secondary 37-XX

DOI:
https://doi.org/10.1090/S0002-9939-09-10149-1

Published electronically:
October 14, 2009

MathSciNet review:
2557175

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a map on a set we examine under what conditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf topology on with respect to which is a continuous map. For separable metrizable and hereditarily Lindelöf, it turns out that there is such a topology precisely when the cardinality of is no greater than , the cardinality of the continuum. We go on to prove that there is a Lindelöf topology on with respect to which is continuous if either or for some , where and for any ordinal and limit ordinal .

**1.**D. Ellis,*Orbital topologies*, Quart. J. Math. Oxford (2), 4 (1953), 117-119. MR**0056281 (15:51c)****2.**R. Engelking,*General topology*, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989. MR**1039321 (91c:54001)****3.**C. Good, S. Greenwood, R. W. Knight, D. W. McIntyre, and S. Watson,*Characterizing continuous functions on compact spaces*, Adv. Math. 206 (2006), 695-728. MR**2263719 (2007i:54027)****4.**J. de Groot and H. de Vries,*Metrization of a set which is mapped into itself*, Quart. J. Math. Oxford (2), 9 (1958), 144-148. MR**0105664 (21:4402)****5.**R. Hodel,*Cardinal Functions. I*, in K. Kunen and J. E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984. MR**776620 (86j:54007)****6.**A. Iwanik,*How restrictive is topological dynamics?*Comment. Math. Univ. Carolin., 38 (1997), 563-569. MR**1485077 (98k:54078)****7.**A. Iwanik, L. Janos and F. A. Smith,*Compactification of a map which is mapped to itself*, Proceedings of the Ninth Prague Topological Symposium (2001) (electronic), Topology Atlas, North Bay, ON, 2002, 165-169. MR**1906837 (2003f:54052)****8.**L. Janos,*An application of combinatorial techniques to a topological problem*, Bull. Austral. Math. Soc., 9 (1973), 439-443. MR**0339090 (49:3853)****9.**T. Jech,*Set Theory, The Third Millennium Edition*, Springer-Verlag, Berlin, 2003. MR**1940513 (2004g:03071)****10.**K. Kunen,*Set Theory, an Introduction to Independence Proofs*, North-Holland, Amsterdam, 1980. MR**597342 (82f:03001)****11.**H. de Vries,*Compactification of a set which is mapped onto itself*, Bull. Acad. Polonaise des Sci. Cl. III, 5 (1957), 943-945. MR**0092144 (19:1069f)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
37B99,
54A10,
54B99,
54C05,
54D20,
54D65,
54H20,
37-XX

Retrieve articles in all journals with MSC (2000): 37B99, 54A10, 54B99, 54C05, 54D20, 54D65, 54H20, 37-XX

Additional Information

**Chris Good**

Affiliation:
School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom

Email:
c.good@bham.ac.uk

**Sina Greenwood**

Affiliation:
University of Auckland, Private Bag 92019, Auckland, New Zealand

Email:
sina@math.auckland.ac.nz

DOI:
https://doi.org/10.1090/S0002-9939-09-10149-1

Keywords:
Abstract dynamical system,
topological dynamical system,
Lindel\"of,
separable metric,
hereditarily Lindel\"of

Received by editor(s):
October 1, 2008

Published electronically:
October 14, 2009

Communicated by:
Jane M. Hawkins

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.