Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Continuity in separable metrizable and Lindelöf spaces


Authors: Chris Good and Sina Greenwood
Journal: Proc. Amer. Math. Soc. 138 (2010), 577-591
MSC (2000): Primary 37B99, 54A10, 54B99, 54C05, 54D20, 54D65, 54H20; Secondary 37-XX
Published electronically: October 14, 2009
MathSciNet review: 2557175
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a map $ T:X\to X$ on a set $ X$ we examine under what conditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf topology on $ X$ with respect to which $ T$ is a continuous map. For separable metrizable and hereditarily Lindelöf, it turns out that there is such a topology precisely when the cardinality of $ X$ is no greater than $ \mathfrak{c}$, the cardinality of the continuum. We go on to prove that there is a Lindelöf topology on $ X$ with respect to which $ T$ is continuous if either $ T^{\mathfrak{c}^+}(X)=T^{\mathfrak{c}^++1}(X)\neq\emptyset$ or $ T^\alpha(X)=\emptyset$ for some $ \alpha<\mathfrak{c}^+$, where $ T^{\alpha+1}(X)=T\big(T^\alpha(X)\big)$ and $ T^\lambda(X)=\bigcap_{\alpha<\lambda}T^{\alpha}(X)$ for any ordinal $ \alpha$ and limit ordinal $ \lambda$.


References [Enhancements On Off] (What's this?)

  • 1. D. Ellis, Orbital topologies, Quart. J. Math., Oxford Ser. (2) 4 (1953), 117–119. MR 0056281
  • 2. Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
  • 3. C. Good, S. Greenwood, R. W. Knight, D. W. McIntyre, and S. Watson, Characterizing continuous functions on compact spaces, Adv. Math. 206 (2006), no. 2, 695–728. MR 2263719, 10.1016/j.aim.2005.11.002
  • 4. J. de Groot and H. de Vries, Metrization of a set which is mapped into itself, Quart. J. Math. Oxford Ser. (2) 9 (1958), 144–148. MR 0105664
  • 5. R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1–61. MR 776620
  • 6. A. Iwanik, How restrictive is topological dynamics?, Comment. Math. Univ. Carolin. 38 (1997), no. 3, 563–569. MR 1485077
  • 7. A. Iwanik, L. Janos, and F. A. Smith, Compactification of a map which is mapped to itself, Proceedings of the Ninth Prague Topological Symposium (2001), Topol. Atlas, North Bay, ON, 2002, pp. 165–169 (electronic). MR 1906837
  • 8. Ludvik Janos, An application of combinatorial techniques to a topological problem, Bull. Austral. Math. Soc. 9 (1973), 439–443. MR 0339090
  • 9. Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
  • 10. Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
  • 11. H. de Vries, Compactification of a set which is mapped onto itself, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 943–945, LXXIX (English, with Russian summary). MR 0092144

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37B99, 54A10, 54B99, 54C05, 54D20, 54D65, 54H20, 37-XX

Retrieve articles in all journals with MSC (2000): 37B99, 54A10, 54B99, 54C05, 54D20, 54D65, 54H20, 37-XX


Additional Information

Chris Good
Affiliation: School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
Email: c.good@bham.ac.uk

Sina Greenwood
Affiliation: University of Auckland, Private Bag 92019, Auckland, New Zealand
Email: sina@math.auckland.ac.nz

DOI: http://dx.doi.org/10.1090/S0002-9939-09-10149-1
Keywords: Abstract dynamical system, topological dynamical system, Lindel\"of, separable metric, hereditarily Lindel\"of
Received by editor(s): October 1, 2008
Published electronically: October 14, 2009
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.