Using Aleksandrov reflection to estimate the location of the center of expansion

Authors:
Yu-Chu Lin and Dong-Ho Tsai

Journal:
Proc. Amer. Math. Soc. **138** (2010), 557-565

MSC (2000):
Primary 35K15, 35K55

DOI:
https://doi.org/10.1090/S0002-9939-09-10155-7

Published electronically:
September 30, 2009

MathSciNet review:
2557173

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the Aleksandrov reflection result of Chow and Gulliver to show that the *center of expansion* in expanding a given convex embedded closed curve lies on a certain convex plane region interior to

**[A]**B. Andrews,*Evolving convex curves*, Cal. of Var. & PDEs,**7**(1998), no. 4, 315-371. MR**1660843 (99k:58038)****[ANG]**S. Angenent,*The zero set of a solution of a parabolic equation*, J. für die reine and angewandte Mathematik,**390**(1988), 79-96. MR**953678 (89j:35015)****[C]**B. Chow,*Geometric aspects of Aleksandrov reflection and gradient estimates for parabolic equations*, Comm. Anal. & Geom.,**5**(1997), no. 2, 389-409. MR**1483984 (98k:53045)****[CG]**B. Chow; R. Gulliver,*Aleksandrov reflection and nonlinear evolution equations, I: The n-sphere and n-ball*, Cal. of Var. & PDEs,**4**(1994), 249-264. MR**1386736 (97f:53064)****[CJ]**R. Courant; F. John,*Introduction to Calculus and Analysis,*Vol. II, John Wiley & Sons, 1974; reprint of the 1974 edition, Springer-Verlag, 1989. MR**1016380 (90j:00002b)****[CLT]**B. Chow; L.-P. Liou; D.-H. Tsai,*Expansion of embedded curves with turning angle greater than*, Invent. Math.,**123**(1996), 415-429. MR**1383955 (97c:58025)****[CT]**B. Chow; D.-H. Tsai,*Geometric expansion of convex plane curves*, J. of Diff. Geom.,**44**(1996), 312-330. MR**1425578 (97m:58041)****[GH]**M. Gage; R. Hamilton,*The heat equation shrinking convex plane curves*, J. of Diff. Geom.,**23**(1986), 69-96. MR**840401 (87m:53003)****[M]**H. Matano,*Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation*, J. Fac. Sci. Univ. Tokyo Sec. IA Math.,**29**(1982), 401-441. MR**672070 (84m:35060)****[S]**R. Schneider,*Convex Bodies: The Brunn-Minkowski Theory*, Cambridge University Press, 1993. MR**1216521 (94d:52007)****[T1]**D.-H. Tsai,*Geometric expansion of starshaped plane curves*, Comm. Anal. & Geom.,**4**(1996), no. 3, 459-480. MR**1415752 (97k:58042)****[T2]**D.-H. Tsai,*Asymptotic closeness to limiting shapes for expanding embedded plane curves*, Invent. Math.,**162**(2005), 473-492. MR**2198219 (2006j:53099)****[T3]**D.-H. Tsai,*Behavior of the gradient for solutions of parabolic equations on the circle*, Cal. of Var. & PDEs,**23**(2005), 251-270. MR**2142063 (2006d:35116)****[U]**J. Urbas,*An expansion of convex hypersurfaces*, J. of Diff. Geom.,**33**(1991), 91-125. Correction, ibid.,**35**(1992), 763-765. MR**1085136 (91j:58155)**; MR**1163459 (93b:58142)****[Y]**H. Yagisita,*Asymptotic behaviors of star-shaped curves expanding by*, Diff. & Integ. Eqs.,**18**(2005), no. 2, 225-232. MR**2106103 (2005m:53128)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K15,
35K55

Retrieve articles in all journals with MSC (2000): 35K15, 35K55

Additional Information

**Yu-Chu Lin**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

Email:
yclin@math.nthu.edu.tw

**Dong-Ho Tsai**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

Email:
dhtsai@math.nthu.edu.tw

DOI:
https://doi.org/10.1090/S0002-9939-09-10155-7

Received by editor(s):
August 4, 2008

Published electronically:
September 30, 2009

Additional Notes:
The research of the second author was supported by NSC (grant number 95-2115-M-007-009) and the research center NCTS of Taiwan.

Communicated by:
Chuu-Lian Terng

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.