Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Geodesics avoiding subsets in Hadamard manifolds

Author: Albert Borbély
Journal: Proc. Amer. Math. Soc. 138 (2010), 1085-1092
MSC (2000): Primary 53C22
Published electronically: October 23, 2009
MathSciNet review: 2566573
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M^{n}$, $ n\geq 3$, be an $ s$-hyperbolic (in the sense of Gromov) Hadamard manifold. Let us assume that we are given a family of disjoint convex subsets and a point $ o$ outside these sets. It is shown that if one shrinks these sets by the constant $ s$, then it is possible to find a complete geodesic through $ o$ that avoids the shrunk sets.

References [Enhancements On Off] (What's this?)

  • [B] A. Borbély, A note on the unclouding the sky of negatively curved manifolds, Bull. Australian Math. Soc. 77 (2008), 413-424. MR 2454972
  • [BO] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fundamenta Mathematicae 20 (1933), 177-190.
  • [BS] S. Buyalo, V. Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society, Zurich (2007). MR 2327160 (2009a:53068)
  • [BSW] S. Buyalo, V. Schroeder, M. Walz, Geodesics avoiding open subsets in surfaces of negative curvature, Ergodic Theory Dynam. Sys. 20 (2000), 991-1006. MR 1779390 (2002e:37045)
  • [BT] R. Bott, L.W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York-Berlin (1986). MR 658304 (83i:57016)
  • [LS] L. Lyusternik, S. Shnirel'man, Topological Methods in Variational Methods (Russian), Issledowatelskii Institut Matematiki i Mechanici, Moscow (1930).
  • [M] Jiri Matoušek, Using the Borsuk-Ulam Theorem, Springer Universitext, 2nd corrected printing, Springer-Verlag, Berlin (2008). MR 1988723 (2004i:55001)
  • [PP1] J. Parkkonen, F. Paulin, Unclouding the sky of negatively curved manifolds, Geom. and Funct. Anal. 15 (2005), 491-533. MR 2153908 (2006i:53048)
  • [PP2] J. Parkkonen, F. Paulin, Prescribing the behavior of geodesics in negative curvature, arXiv:07062579v1 (2007).
  • [S] V. Schroeder, Bounded geodesics in manifolds of negative curvature, Math. Z. 235 (2000), 817-828. MR 1801585 (2001m:53065)
  • [W] M. Walz, Invariant subsets of the geodesic flow on negatively curved manifolds, Thesis, Zurich (1998).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C22

Retrieve articles in all journals with MSC (2000): 53C22

Additional Information

Albert Borbély
Affiliation: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Keywords: Convex sets, negative curvature, geodesics
Received by editor(s): June 12, 2008
Published electronically: October 23, 2009
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society