Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A two-parameter family of complex Hadamard matrices of order $6$ induced by hypocycloids
HTML articles powered by AMS MathViewer

by Ferenc Szöllősi PDF
Proc. Amer. Math. Soc. 138 (2010), 921-928 Request permission

Abstract:

We construct a $2$-parameter family of complex Hadamard matrices of order $6$ by a natural block construction. We combine this family with an earlier result of Zauner to derive a $2$-parameter family of triplets of mutually unbiased bases (MUBs) in $\mathbb C^6$. This invalidates some numerical evidence given by Brierley and Weigert and sheds new light on the problem of determining the maximal number of MUBs in $\mathbb C^6$.
References
  • Kyle Beauchamp and Remus Nicoara, Orthogonal maximal abelian $\ast$-subalgebras of the $6\times 6$ matrices, Linear Algebra Appl. 428 (2008), no. 8-9, 1833–1853. MR 2398121, DOI 10.1016/j.laa.2007.10.023
  • I. Bengtsson, W. Bruzda, Å. Ericsson, J. Larsson, W. Tadej, K. Życzkowski, Mutually un- biased bases and Hadamards of order six, J. Math. Phys. 48, 052106 (2007).
  • Göran Björck, Functions of modulus $1$ on $Z_n$ whose Fourier transforms have constant modulus, and “cyclic $n$-roots”, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 315, Kluwer Acad. Publ., Dordrecht, 1990, pp. 131–140. MR 1081347
  • Stephen Brierley and Stefan Weigert, Maximal sets of mutually unbiased quantum states in dimension 6, Phys. Rev. A (3) 78 (2008), no. 4, 042312, 8. MR 2491052, DOI 10.1103/PhysRevA.78.042312
  • S. Brierley, S. Weigert, Constructing mutually unbiased bases in dimension six, preprint, arXiv:0901.4051v1 [quant-ph] (2009).
  • P. Butterley, W. Hall, Numerical evidence for the maximum number of mutually unbiased bases in dimension six, Physics Letters A 369, 5-8 (2007).
  • N. J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Security of quantum key distribution using $d$-level systems, Phys. Rev. Lett. 88, 127902 (2002).
  • P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A 37 (2004), no. 20, 5355–5374. MR 2065675, DOI 10.1088/0305-4470/37/20/008
  • Uffe Haagerup, Orthogonal maximal abelian $*$-subalgebras of the $n\times n$ matrices and cyclic $n$-roots, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 296–322. MR 1491124, DOI 10.1215/s0012-7094-97-09004-9
  • Pierre de la Harpe and Vaughan Jones, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 3, 147–150 (French, with English summary). MR 1065880
  • P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi, M. Weiner, A generalized Pauli problem and an infinite family of MUB-triplets in dimension $6$, J. Physics A: Math. and Theo. 42, no. 24 (2009), 245305.
  • Andreas Klappenecker and Martin Rötteler, Constructions of mutually unbiased bases, Finite fields and applications, Lecture Notes in Comput. Sci., vol. 2948, Springer, Berlin, 2004, pp. 137–144. MR 2092627, DOI 10.1007/978-3-540-24633-6_{1}0
  • Máté Matolcsi and Ferenc Szöllősi, Towards a classification of $6\times 6$ complex Hadamard matrices, Open Syst. Inf. Dyn. 15 (2008), no. 2, 93–108. MR 2451755, DOI 10.1142/S1230161208000092
  • Akihiro Munemasa and Yasuo Watatani, Paires orthogonales de sous-algèbres involutives, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 5, 329–331 (French, with English summary). MR 1153709
  • Sorin Popa, Orthogonal pairs of $\ast$-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. MR 703810
  • Metod Saniga and Michel Planat, Viewing sets of mutually unbiased bases as arcs in finite projective planes, Chaos Solitons Fractals 26 (2005), no. 5, 1267–1270. MR 2149314, DOI 10.1016/j.chaos.2005.03.008
  • A. J. Skinner, V. A. Newell, R. Sanchez, Unbiased bases (Hadamards) for $6$-level systems: Four ways from Fourier, preprint, arXiv:0810.1761v1 [quant-ph] (2008).
  • Wojciech Tadej and Karol Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), no. 2, 133–177. MR 2244963, DOI 10.1007/s11080-006-8220-2
  • Website for complex Hadamard matrices: http://chaos.if.uj.edu.pl/$\sim$karol/hadamard/
  • M. Weiner, A gap for the maximum number of mutually unbiased bases, preprint, arXiv:0902.0635v1 [math-ph] (2009).
  • R. F. Werner, All teleportation and dense coding schemes, J. Phys. A 34 (2001), no. 35, 7081–7094. Quantum information and computation. MR 1863141, DOI 10.1088/0305-4470/34/35/332
  • Pawel Wocjan and Thomas Beth, New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), no. 2, 93–101. MR 2132048, DOI 10.26421/QIC5.2-1
  • William K. Wootters and Brian D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (1989), no. 2, 363–381. MR 1003014, DOI 10.1016/0003-4916(89)90322-9
  • G. Zauner, Orthogonale Lateinische Quadrate und Anordnungen, Verallgemeinerte Hadamard-matrizen und Unabhängigkelt in der Quanten-Wahrscheinlichkeitestheorie, Master Thesis, Universität Wien (1991).
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L10, 05B20
  • Retrieve articles in all journals with MSC (2000): 46L10, 05B20
Additional Information
  • Ferenc Szöllősi
  • Affiliation: Institute of Mathematics and Its Applications, Central European University (CEU), H-1051, Nádor u. 9, Budapest, Hungary
  • Email: szoferi@gmail.com
  • Received by editor(s): April 3, 2009
  • Published electronically: October 20, 2009
  • Additional Notes: This work was supported by Hungarian National Research Fund OTKA-K77748
  • Communicated by: Marius Junge
  • © Copyright 2009 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 138 (2010), 921-928
  • MSC (2000): Primary 46L10; Secondary 05B20
  • DOI: https://doi.org/10.1090/S0002-9939-09-10102-8
  • MathSciNet review: 2566558