Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A two-parameter family of complex Hadamard matrices of order $ 6$ induced by hypocycloids


Author: Ferenc Szöllosi
Journal: Proc. Amer. Math. Soc. 138 (2010), 921-928
MSC (2000): Primary 46L10; Secondary 05B20
Published electronically: October 20, 2009
MathSciNet review: 2566558
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a $ 2$-parameter family of complex Hadamard matrices of order $ 6$ by a natural block construction. We combine this family with an earlier result of Zauner to derive a $ 2$-parameter family of triplets of mutually unbiased bases (MUBs) in $ \mathbb{C}^6$. This invalidates some numerical evidence given by Brierley and Weigert and sheds new light on the problem of determining the maximal number of MUBs in $ \mathbb{C}^6$.


References [Enhancements On Off] (What's this?)

  • 1. Kyle Beauchamp and Remus Nicoara, Orthogonal maximal abelian ∗-subalgebras of the 6×6 matrices, Linear Algebra Appl. 428 (2008), no. 8-9, 1833–1853. MR 2398121, 10.1016/j.laa.2007.10.023
  • 2. I. Bengtsson, W. Bruzda, Å. Ericsson, J. Larsson, W. Tadej, K. Życzkowski, Mutually un- biased bases and Hadamards of order six, J. Math. Phys. 48, 052106 (2007).
  • 3. Göran Björck, Functions of modulus 1 on 𝑍_{𝑛} whose Fourier transforms have constant modulus, and “cyclic 𝑛-roots”, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 315, Kluwer Acad. Publ., Dordrecht, 1990, pp. 131–140. MR 1081347
  • 4. Stephen Brierley and Stefan Weigert, Maximal sets of mutually unbiased quantum states in dimension 6, Phys. Rev. A (3) 78 (2008), no. 4, 042312, 8. MR 2491052, 10.1103/PhysRevA.78.042312
  • 5. S. Brierley, S. Weigert, Constructing mutually unbiased bases in dimension six, preprint, arXiv:0901.4051v1 [quant-ph] (2009).
  • 6. P. Butterley, W. Hall, Numerical evidence for the maximum number of mutually unbiased bases in dimension six, Physics Letters A 369, 5-8 (2007).
  • 7. N. J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Security of quantum key distribution using $ d$-level systems, Phys. Rev. Lett. 88, 127902 (2002).
  • 8. P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A 37 (2004), no. 20, 5355–5374. MR 2065675, 10.1088/0305-4470/37/20/008
  • 9. Uffe Haagerup, Orthogonal maximal abelian *-subalgebras of the 𝑛×𝑛 matrices and cyclic 𝑛-roots, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 296–322. MR 1491124
  • 10. Pierre de la Harpe and Vaughan Jones, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 3, 147–150 (French, with English summary). MR 1065880
  • 11. P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi, M. Weiner, A generalized Pauli problem and an infinite family of MUB-triplets in dimension $ 6$, J. Physics A: Math. and Theo. 42, no. 24 (2009), 245305.
  • 12. Andreas Klappenecker and Martin Rötteler, Constructions of mutually unbiased bases, Finite fields and applications, Lecture Notes in Comput. Sci., vol. 2948, Springer, Berlin, 2004, pp. 137–144. MR 2092627, 10.1007/978-3-540-24633-6_10
  • 13. Máté Matolcsi and Ferenc Szöllősi, Towards a classification of 6×6 complex Hadamard matrices, Open Syst. Inf. Dyn. 15 (2008), no. 2, 93–108. MR 2451755, 10.1142/S1230161208000092
  • 14. Akihiro Munemasa and Yasuo Watatani, Paires orthogonales de sous-algèbres involutives, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 5, 329–331 (French, with English summary). MR 1153709
  • 15. Sorin Popa, Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. MR 703810
  • 16. Metod Saniga and Michel Planat, Viewing sets of mutually unbiased bases as arcs in finite projective planes, Chaos Solitons Fractals 26 (2005), no. 5, 1267–1270. MR 2149314, 10.1016/j.chaos.2005.03.008
  • 17. A. J. Skinner, V. A. Newell, R. Sanchez, Unbiased bases (Hadamards) for $ 6$-level systems: Four ways from Fourier, preprint, arXiv:0810.1761v1 [quant-ph] (2008).
  • 18. Wojciech Tadej and Karol Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), no. 2, 133–177. MR 2244963, 10.1007/s11080-006-8220-2
  • 19. Website for complex Hadamard matrices: http://chaos.if.uj.edu.pl/$ \sim$karol/hadamard/
  • 20. M. Weiner, A gap for the maximum number of mutually unbiased bases, preprint, arXiv:0902.0635v1 [math-ph] (2009).
  • 21. R. F. Werner, All teleportation and dense coding schemes, J. Phys. A 34 (2001), no. 35, 7081–7094. Quantum information and computation. MR 1863141, 10.1088/0305-4470/34/35/332
  • 22. Pawel Wocjan and Thomas Beth, New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), no. 2, 93–101. MR 2132048
  • 23. William K. Wootters and Brian D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (1989), no. 2, 363–381. MR 1003014, 10.1016/0003-4916(89)90322-9
  • 24. G. Zauner, Orthogonale Lateinische Quadrate und Anordnungen, Verallgemeinerte Hadamard-matrizen und Unabhängigkelt in der Quanten-Wahrscheinlichkeitestheorie, Master Thesis, Universität Wien (1991).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L10, 05B20

Retrieve articles in all journals with MSC (2000): 46L10, 05B20


Additional Information

Ferenc Szöllosi
Affiliation: Institute of Mathematics and Its Applications, Central European University (CEU), H-1051, Nádor u. 9, Budapest, Hungary
Email: szoferi@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-09-10102-8
Received by editor(s): April 3, 2009
Published electronically: October 20, 2009
Additional Notes: This work was supported by Hungarian National Research Fund OTKA-K77748
Communicated by: Marius Junge
Article copyright: © Copyright 2009 American Mathematical Society