Hypergeometric origins of Diophantine properties associated with the Askey scheme
Authors:
Yang Chen and Mourad E. H. Ismail
Journal:
Proc. Amer. Math. Soc. 138 (2010), 943951
MSC (2000):
Primary 33C20, 33C45
Published electronically:
October 23, 2009
MathSciNet review:
2566561
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The ``Diophantine'' properties of the zeros of certain polynomials in the Askey scheme, recently discovered by Calogero and his collaborators, are explained, with suitably chosen parameter values, in terms of the summation theorem of hypergeometric series. Here the Diophantine property refers to integer valued zeros. It turns out that the same procedure can also be applied to polynomials arising from the basic hypergeometric series. We found, with suitably chosen parameters and certain analogues of the summation theorems, zeros of these polynomials explicitly which are no longer integer valued. This goes beyond the results obtained by the authors previously mentioned.
 1.
V.
È. Adler and A.
B. Shabat, On a class of Toda chains, Teoret. Mat. Fiz.
111 (1997), no. 3, 323–334 (Russian, with
English and Russian summaries); English transl., Theoret. and Math. Phys.
111 (1997), no. 3, 647–657. MR 1472211
(98i:58110), 10.1007/BF02634053
 2.
George
E. Andrews, Richard
Askey, and Ranjan
Roy, Special functions, Encyclopedia of Mathematics and its
Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958
(2000g:33001)
 3.
M.
Bruschi, F.
Calogero, and R.
Droghei, Proof of certain Diophantine conjectures and
identification of remarkable classes of orthogonal polynomials, J.
Phys. A 40 (2007), no. 14, 3815–3829. MR 2325078
(2008m:33031), 10.1088/17518113/40/14/005
 4.
M.
Bruschi, F.
Calogero, and R.
Droghei, Tridiagonal matrices, orthogonal polynomials and
Diophantine relations. I, J. Phys. A 40 (2007),
no. 32, 9793–9817. MR 2370544
(2008k:15026), 10.1088/17518113/40/32/006
 5.
M.
Bruschi, F.
Calogero, and R.
Droghei, Tridiagonal matrices, orthogonal polynomials and
Diophantine relations. II, J. Phys. A 40 (2007),
no. 49, 14759–14772. MR 2441873
(2010b:42033), 10.1088/17518113/40/49/010
 6.
M.
Bruschi, F.
Calogero, and R.
Droghei, Additional recursion relations, factorizations, and
Diophantine properties associated with the polynomials of the Askey
scheme, Adv. Math. Phys. (2009), Art. ID 268134, 43. MR 2500948
(2010e:33010)
 7.
Francesco
Calogero, Isochronous systems, Oxford University Press,
Oxford, 2008. MR
2383111 (2009h:37114)
 8.
Jerry
L. Fields and Jet
Wimp, Expansions of hypergeometric functions
in hypergeometric functions., Math. Comp.
15 (1961),
390–395. MR 0125992
(23 #A3289), 10.1090/S00255718196101259923
 9.
George
Gasper and Mizan
Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of
Mathematics and its Applications, vol. 96, Cambridge University Press,
Cambridge, 2004. With a foreword by Richard Askey. MR 2128719
(2006d:33028)
 10.
Mourad
E. H. Ismail, Classical and quantum orthogonal polynomials in one
variable, Encyclopedia of Mathematics and its Applications,
vol. 98, Cambridge University Press, Cambridge, 2005. With two
chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786
(2007f:33001)
 11.
Mourad
E. H. Ismail and Dennis
Stanton, 𝑞Taylor theorems, polynomial expansions, and
interpolation of entire functions, J. Approx. Theory
123 (2003), no. 1, 125–146. MR 1985020
(2004g:30040), 10.1016/S00219045(03)000765
 12.
R. Koekoek and R. Swarttouw, The Askeyscheme of hypergeometric orthogonal polynomials and its analogues, Reports of the Faculty of Technical Mathematics and Informatics, no. 9817, Delft University of Technology, Delft, 1998.
 13.
A.
B. Shabat and R.
I. Yamilov, To a transformation theory of twodimensional
integrable systems, Phys. Lett. A 227 (1997),
no. 12, 15–23. MR 1435916
(98b:58086), 10.1016/S03759601(96)00922X
 14.
L. J. Slater, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1964.
 15.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 16.
R. I. Yamilov, Classification of Todatype scalar lattices, in: Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore, 1993.
 1.
 V. E. Adler and A. B. Shabat, On a class of Toda chains, Theor. Math. Phy. 111 (1997), 647657. MR 1472211 (98i:58110)
 2.
 G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
 3.
 M. Bruschi, F. Calogero, R. Droghei, Proof of certain Diophantine conjectures and identification of a remarkable class of orthogonal polynomials, J. Phys. A: Math. Theor. 40 (2007), 38153829. MR 2325078 (2008m:33031)
 4.
 M. Bruschi, F. Calogero, R. Droghei, Tridiagonal matrices, orthogonal polynomials and conjectures and Diophantine relations. I, J. Phys. A: Math. Theor. 40 (2007), 97939817. MR 2370544 (2008k:15026)
 5.
 M. Bruschi, F. Calogero, R. Droghei, Tridiagonal matrices, orthogonal polynomials and conjectures and Diophantine relations. II, J. Phys. A: Math. Theor. 40 (2007), 1475914772. MR 2441873
 6.
 M. Bruschi, F. Calogero, R. Droghei, Additional recursion relations, factorizations and Diophantine properties associated with the polynomials of the AskeyScheme, Adv. Math. Phys. 2009, Art. ID 268134, 43 pp. MR 2500948
 7.
 F. Calogero, Isochronous Systems, Oxford University Press, 2008, Appendix C. MR 2383111
 8.
 J. Fields and J. Wimp, Expansions of hypergeometric functions in hypergeometric functions, Math. Comp. 15 (1961), 390395. MR 0125992 (23:A3289)
 9.
 G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications, volume 96, Cambridge University Press, Cambridge, 2004. MR 2128719 (2006d:33028)
 10.
 M. E. H. Ismail, Classical and Quantum Orthogonal Polynommials in One Variable, Cambridge University Press, Cambridge, 2005. MR 2191786 (2007f:33001)
 11.
 M. E. H. Ismail and D. Stanton, Taylor theorems, polynomial expansions, and interpolation of entire functions, J. Approximation Theory 123 (2003), 125146. MR 1985020 (2004g:30040)
 12.
 R. Koekoek and R. Swarttouw, The Askeyscheme of hypergeometric orthogonal polynomials and its analogues, Reports of the Faculty of Technical Mathematics and Informatics, no. 9817, Delft University of Technology, Delft, 1998.
 13.
 A. B. Shabat and R. I. Yamilov, To a transformation theory of twodimensional integrable systems, Phys. Lett. A 227 (1997) 1521. MR 1435916 (98b:58086)
 14.
 L. J. Slater, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1964.
 15.
 G. Szegő, Orthogonal Polynomials, 4th edition, Amer. Math. Soc., Providence, RI, 1975. MR 0372517 (51:8724)
 16.
 R. I. Yamilov, Classification of Todatype scalar lattices, in: Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore, 1993.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
33C20,
33C45
Retrieve articles in all journals
with MSC (2000):
33C20,
33C45
Additional Information
Yang Chen
Affiliation:
Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, United Kingdom
Email:
ychen@ic.ac.uk
Mourad E. H. Ismail
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816
Email:
ismail@math.ucf.edu
DOI:
http://dx.doi.org/10.1090/S0002993909101065
Keywords:
Generalized hypergeometric series,
basic hypergeometric series,
summation theorems.
Received by editor(s):
March 7, 2009
Received by editor(s) in revised form:
June 12, 2009
Published electronically:
October 23, 2009
Communicated by:
Walter Van Assche
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
