Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

When weak Hopf algebras are Frobenius


Authors: Miodrag Cristian Iovanov and Lars Kadison
Journal: Proc. Amer. Math. Soc. 138 (2010), 837-845
MSC (2000): Primary 18D10; Secondary 16W30, 16S50, 16D90, 16L30
DOI: https://doi.org/10.1090/S0002-9939-09-10121-1
Published electronically: October 22, 2009
MathSciNet review: 2566549
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate when a weak Hopf algebra $ H$ is Frobenius. We show this is not always true, but it is true if the semisimple base algebra $ A$ has all its matrix blocks of the same dimension. However, if $ A$ is a semisimple algebra not having this property, there is a weak Hopf algebra $ H$ with base $ A$ which is not Frobenius (and consequently, it is not Frobenius ``over'' $ A$ either). Moreover, we give a categorical counterpart of the result that a Hopf algebra is a Frobenius algebra for a noncoassociative generalization of a weak Hopf algebra.


References [Enhancements On Off] (What's this?)

  • [BC] D. Bulacu, S. Caenepeel, Integrals for (dual) quasi-Hopf algebras. Applications, J. Algebra 266 (2003), no. 2, 552-583. MR 1995128 (2004k:16095)
  • [BNS] G. Böhm, F. Nill, K. Szlachányi, Weak Hopf algebras. I. Integral theory and C$ ^*$-structures, J. Algebra 221 (1999), 385-438. MR 1726707 (2001a:16059)
  • [BoSz] G. Böhm, K. Szlachányi, A coassociative C$ ^*$-quantum group with nonintegral dimensions, Lett. Math. Phys. 38 (1996), no. 4, 437-456. MR 1421688 (97k:46080)
  • [BK] B. Bakalov, A. Kirillov, Jr., Lectures on tensor categories and modular functors, Univ. Lect. Ser. 21, Amer. Math. Soc., Providence, RI, 2001. MR 1797619 (2002d:18003)
  • [CE] D. Calaque, P. Etingof, Lectures on tensor categories, in Quantum Groups (B. Enriquez, V. Turaev, eds.), IRMA Lectures in Mathematics and Theoretical Physics, 12, EMS, 2008. MR 2432988 (2009g:18010)
  • [CDG] S. Caenepeel, E. De Groot, Galois theory for weak Hopf algebras, Rev. Roumaine Math. Pures Appl. 52 (2007), 151-176. MR 2337749 (2008g:16061)
  • [D] V.G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457. MR 1047964 (91b:17016)
  • [EO] P. Etingof, V. Ostrik, Finite tensor categories, Mosc. Math. J. 4, No. 3 (July-Sept. 2004), 627-654. MR 2119143 (2005j:18006)
  • [ENO] P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279 (2006m:16051)
  • [FFRS] J. Frölich, J. Fuchs, I. Runkel, C. Schweigert, Picard groups in rational conformal field theory, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 85-100. MR 2184014 (2007a:81131)
  • [HO] R. Haring-Oldenburg, Reconstruction of weak quasi-Hopf algebras, J. Algebra 194 (1997), no. 1, 14-35. MR 1461480 (98h:16062)
  • [K] L. Kadison, New Examples of Frobenius Extensions, Univ. Lect. Ser., 14, Amer. Math. Soc., Providence, RI, 1999. MR 1690111 (2001j:16024)
  • [L] T.-Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer, 1999. MR 1653294 (99i:16001)
  • [MS] G. Mack, V. Schomerus, Quasi-Hopf quantum symmetry in quantum theory, Nuclear Phys. B 370 (1992), no. 1, 185-230. MR 1148544 (93c:81081)
  • [N] D. Nikshych, On the structure of weak Hopf algebras, Adv. Math. 170 (2002), 257-286. MR 1932332 (2003f:16063)
  • [S] K. Szlachányi, Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996), 621-632, Int. Press, Cambridge, MA, 1997. MR 1491146 (99a:46105)
  • [V] P. Vecsernyés, Larson-Sweedler theorem and the role of grouplike elements in weak Hopf algebras, J. Algebra 270 (2003), 471-520. MR 2019628 (2005a:16058)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 18D10, 16W30, 16S50, 16D90, 16L30

Retrieve articles in all journals with MSC (2000): 18D10, 16W30, 16S50, 16D90, 16L30


Additional Information

Miodrag Cristian Iovanov
Affiliation: Faculty of Mathematics, University of Bucharest, Str. Academiei 14, RO-70109, Bucharest, Romania – and – State University of New York, Buffalo, 244 Mathematics Building, Buffalo, New York 14260-2900
Email: yovanov@gmail.com, e-mail@yovanov.net

Lars Kadison
Affiliation: Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 S. 33rd Street, Philadelphia, Pennsylvania 19104
Address at time of publication: Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, #0112, La Jolla, California 92093
Email: lkadison@math.upenn.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10121-1
Keywords: Weak Hopf algebra, quasi-Hopf algebra, Frobenius algebra, quasi-Frobenius algebra, tensor category, Tannakian reconstruction
Received by editor(s): November 20, 2008
Received by editor(s) in revised form: July 15, 2009
Published electronically: October 22, 2009
Additional Notes: The first author was partially supported by contract no. 24/28.09.07 with UEFISCU “Groups, quantum groups, corings and representation theory” of CNCIS, PN II (ID_1002).
Communicated by: Martin Lorenz
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society