Dominance of a rational map to the Coble quartic
Author:
Sukmoon Huh
Journal:
Proc. Amer. Math. Soc. 138 (2010), 777786
MSC (2000):
Primary 14D20; Secondary 14M15
Published electronically:
October 20, 2009
MathSciNet review:
2566543
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show the dominance of the restriction map from a moduli space of stable sheaves on the projective plane to the Coble sixfold quartic. With the dominance and the interpretation of a stable sheaf on the plane in terms of hyperplane arrangements, we expect these tools to reveal the geometry of the Coble quartic.
 1.
E.
Arbarello, M.
Cornalba, P.
A. Griffiths, and J.
Harris, Geometry of algebraic curves. Vol. I, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 267, SpringerVerlag, New York, 1985. MR 770932
(86h:14019)
 2.
W.
Barth, Moduli of vector bundles on the projective plane,
Invent. Math. 42 (1977), 63–91. MR 0460330
(57 #324)
 3.
Arthur
B. Coble, Algebraic geometry and theta functions, Revised
printing. American Mathematical Society Colloquium Publication, vol. X,
American Mathematical Society, Providence, R.I., 1961. MR 0123958
(23 #A1279)
 4.
I.
Dolgachev and M.
Kapranov, Arrangements of hyperplanes and vector bundles on
𝐏ⁿ, Duke Math. J. 71 (1993),
no. 3, 633–664. MR 1240599
(95e:14029), 10.1215/S0012709493071256
 5.
G.
Elencwajg, Les fibrés uniformes de rang 3 sur
𝑃₂(𝐶) sont homogènes, Math. Ann.
231 (1977/78), no. 3, 217–227 (French). MR 0481133
(58 #1278)
 6.
Robin
Hartshorne, Algebraic geometry, SpringerVerlag, New
YorkHeidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
(57 #3116)
 7.
G.
Hein, The tangent bundle of 𝑃² restricted to plane
curves, Complex analysis and geometry (Trento, 1995) Pitman Res.
Notes Math. Ser., vol. 366, Longman, Harlow, 1997,
pp. 137–140. MR 1477446
(98j:14047)
 8.
S. Huh, Moduli spaces of stable sheaves on the projective plane and on the plane quartic curve, Ph.D. thesis, University of Michigan, May 2007.
 9.
Klaus
Hulek, Stable rank2 vector bundles on 𝑃₂ with
𝑐₁\ odd, Math. Ann. 242 (1979),
no. 3, 241–266. MR 545217
(80m:14011), 10.1007/BF01420729
 10.
YoungHoon
Kiem, The stringy 𝐸function of the
moduli space of rank 2 bundles over a Riemann surface of genus 3,
Trans. Amer. Math. Soc. 355 (2003),
no. 5, 1843–1856
(electronic). MR
1953528 (2003j:14045), 10.1090/S0002994702031252
 11.
Herbert
Lange, Higher secant varieties of curves and the theorem of Nagata
on ruled surfaces, Manuscripta Math. 47 (1984),
no. 13, 263–269. MR 744323
(85f:14043), 10.1007/BF01174597
 12.
Shigeru
Mukai, An introduction to invariants and moduli, Cambridge
Studies in Advanced Mathematics, vol. 81, Cambridge University Press,
Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W.
M. Oxbury. MR
2004218 (2004g:14002)
 13.
M.
S. Narasimhan and S.
Ramanan, 2𝜃linear systems on abelian varieties,
Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund.
Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987,
pp. 415–427. MR 893605
(88j:14014)
 14.
W.
M. Oxbury, C.
Pauly, and E.
Previato, Subvarieties of
𝒮𝒰_{𝒞}(2) and 2𝜃divisors in the
Jacobian, Trans. Amer. Math. Soc.
350 (1998), no. 9,
3587–3614. MR 1467474
(98m:14034), 10.1090/S0002994798021485
 15.
J.
G. Semple and L.
Roth, Introduction to Algebraic Geometry, Oxford, at the
Clarendon Press, 1949. MR 0034048
(11,535d)
 16.
F.
L. Zak, Tangents and secants of algebraic varieties,
Translations of Mathematical Monographs, vol. 127, American
Mathematical Society, Providence, RI, 1993. Translated from the Russian
manuscript by the author. MR 1234494
(94i:14053)
 1.
 E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, SpringerVerlag, New York, 1985. MR 770932 (86h:14019)
 2.
 W. Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 6391. MR 0460330 (57:324)
 3.
 Arthur B. Coble, Algebraic geometry and theta functions, revised printing. American Mathematical Society Colloquium Publication, vol. X, American Mathematical Society, Providence, RI, 1961. MR 0123958 (23:A1279)
 4.
 I. Dolgachev and M. Kapranov, Arrangements of hyperplanes and vector bundles on , Duke Math. J. 71 (1993), no. 3, 633664. MR 1240599 (95e:14029)
 5.
 G. Elencwajg, Les fibrés uniformes de rang sur sont homogènes, Math. Ann. 231 (1977/78), no. 3, 217227. MR 0481133 (58:1278)
 6.
 Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, SpringerVerlag, New York, 1977. MR 0463157 (57:3116)
 7.
 G. Hein, The tangent bundle of restricted to plane curves, Complex analysis and geometry (Trento, 1995), Pitman Res. Notes Math. Ser., vol. 366, Longman, Harlow, 1997, pp. 137140. MR 1477446 (98j:14047)
 8.
 S. Huh, Moduli spaces of stable sheaves on the projective plane and on the plane quartic curve, Ph.D. thesis, University of Michigan, May 2007.
 9.
 Klaus Hulek, Stable rank vector bundles on with odd, Math. Ann. 242 (1979), no. 3, 241266. MR 545217 (80m:14011)
 10.
 YoungHoon Kiem, The stringy function of the moduli space of rank bundles over a Riemann surface of genus , Trans. Amer. Math. Soc. 355 (2003), no. 5, 18431856 (electronic). MR 1953528 (2003j:14045)
 11.
 Herbert Lange, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47 (1984), no. 13, 263269. MR 744323 (85f:14043)
 12.
 Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003; translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218 (2004g:14002)
 13.
 M. S. Narasimhan and S. Ramanan, linear systems on abelian varieties, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 415427. MR 893605 (88j:14014)
 14.
 W. M. Oxbury, C. Pauly, and E. Previato, Subvarieties of and divisors in the Jacobian, Trans. Amer. Math. Soc. 350 (1998), no. 9, 35873614. MR 1467474 (98m:14034)
 15.
 J. G. Semple and L. Roth, Introduction to algebraic geometry, Oxford, at the Clarendon Press, 1949. MR 0034048 (11:535d)
 16.
 F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993; translated from the Russian manuscript by the author. MR 1234494 (94i:14053)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
14D20,
14M15
Retrieve articles in all journals
with MSC (2000):
14D20,
14M15
Additional Information
Sukmoon Huh
Affiliation:
Korea Institute for Advanced Study, Hoegiro 87, Dongdaemungu, Seoul 130722, Republic of Korea
Email:
sukmoonh@kias.re.kr
DOI:
http://dx.doi.org/10.1090/S0002993909101296
Received by editor(s):
January 15, 2008
Received by editor(s) in revised form:
April 26, 2009
Published electronically:
October 20, 2009
Additional Notes:
This article is part of the revised version of the author’s thesis at the University of Michigan. The author would like to express his deepest gratitude to his advisor, Professor Igor Dolgachev. The author is also grateful to the referee for many suggestions.
Communicated by:
Ted Chinburg
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
