THE HOMOTOPY GROUPS OF $L_2T(1)/(v_1)$ AT AN ODD PRIME

LIU XIUGUI, WANG XIANGJUN, AND YUAN ZIHONG

(Communicated by Paul Goerss)

ABSTRACT. In this paper, all spectra are localized at an odd prime. Let $T(1)$ be the Ravenel spectrum characterized by BP_*-homology as $BP_*[t_1]$. $T(1)/(v_1)$ be the cofiber of the self-map $v_1 : \Sigma^{2p-2}T(1) \to T(1)$ and L_2 denote the Bousfield localization functor with respect to $v_1^{-1}BP_*$. In this paper, we determine the homotopy groups of $L_2T(1)/(v_1)$.

1. INTRODUCTION

Let \mathcal{S}_p denote the stable homotopy category of spectra localized at the prime number p, and let BP denote the Brown-Peterson spectrum characterized by the coefficient ring $BP_* = \pi_*(BP) = \mathbb{Z}_p[v_1, v_2, \cdots]$. Then (BP_*, BP_*BP) is a Hopf algebroid, where $BP_*BP = BP_*[t_1, t_2, \cdots]$. One has the Bousfield localization functor $L_n : \mathcal{S}_p \to \mathcal{S}_p$ with respect to $v_1^{-1}BP_*$, and one denotes the image of it as L_n. The homotopy groups $\pi_*(L_nS^0)$ of the sphere spectrum S^0 play an important role in understanding L_n. The main tool to determine them is the Adams-Novikov spectral sequence. For $n \leq 2$, the Adams-Novikov E_2-terms for $\pi_*(L_nS^0)$ were determined in [8], [13], [14], [15] and the homotopy groups of L_nS^0 are also determined if $n \leq 2$, except for the case that $n = 2$ and $p = 2$.

Ravenel [7] constructed a spectrum $T(m)$ for each integer $m \geq 0$, whose BP_*-homology is the subcomodule algebra $BP_*[t_1, \cdots, t_m]$ of BP_*BP. There is a tower of spectra:

$$S^0_{(p)} = T(0) \hookrightarrow T(1) \hookrightarrow T(2) \hookrightarrow \cdots \hookrightarrow T(m) \hookrightarrow \cdots \hookrightarrow T(\infty) = BP.$$

Using the infinite descent method of [11], one could get information of $\pi_*(L_nS^0)$ from $\pi_*(L_nT(m))$.

Consider the Adams-Novikov spectral sequence for $\pi_*(T(m))$:

$$Ext^{*,*}_{BP_*BP}(BP_*, BP_*(T(m))) \Rightarrow \pi_{*-s}(T(m)).$$

It is known that for $i \leq m$, the v_i’s are permanent cycles (cf. [7], 6.5.9). Since $T(m)$ is a ring spectrum, the homotopy element $v_i \in \pi_*(T(m))$ extends to the self-map

$v_i : \Sigma^{2(p'-1)}T(m) = S^{2(p'-1)} \wedge T(m) \overset{v_i}{\longrightarrow} T(m) \wedge T(m) \overset{\mu}{\longrightarrow} T(m).$
In this paper, we study the homotopy groups of $L_2T(1)$. Let $T(1)/(v_1)$ be the cofiber of $v_1: \Sigma^{2p-2}T(1) \to T(1)$, let $T(1)/(p)$ be the cofiber of $p: T(1) \to T(1)$ and let $T(1)/(p,v_1)$ be the cofiber of $v_1: \Sigma^{2p-2}T(1)/(p) \to T(1)/(p)$, which is also the cofiber of $p: T(1)/(v_1) \to T(1)/(v_1)$. Consider the localization map $L_n : X \to L_nX$, let $T(1)/(p^\infty,v_1)$ denote the cofiber of $L_0 : T(1)/(v_1) \to L_0T(1)/(v_1)$, let $T(1)/(p,v_1^\infty)$ denote the cofiber of $L_1 : T(1)/(p) \to L_1T(1)/(p)$ and let $T(1)/(p^\infty,v_1^\infty)$ denote the cofiber of $L_1 : T(1)/(p^\infty) \to L_1T(1)/(p^\infty)$, which is the cofiber of $L_0 : T(1)/(v_1^\infty) \to L_0T(1)/(v_1^\infty)$ too. Then by the 3×3 theorem we have the following cofiber sequences:

$$L_2T(1)/(p^\infty, v_1) \xrightarrow{1/v_1} L_2T(1)/(p^\infty, v_1^\infty) \xrightarrow{v_1} L_2T(1)/(p^\infty, v_1^\infty),$$

$$L_2T(1)/(p, v_1^\infty) \xrightarrow{1/p} L_2T(1)/(p^\infty, v_1^\infty) \xrightarrow{p} L_2T(1)/(p^\infty, v_1^\infty).$$

These give two ways to work out the homotopy groups of $L_2T(1)$, both starting from $L_2T(1)/(p,v_1)$:

1. $\pi_*(L_2T(1)/(p,v_1)) \Rightarrow \pi_*(L_2T(1)/(p))$, then $\Rightarrow \pi_*(L_2T(1)).$
2. $\pi_*(L_2T(1)/(p,v_1)) \Rightarrow \pi_*(L_2T(1)/(v_1))$, then $\Rightarrow \pi_*(L_2T(1)).$

At the prime 2, Shimomura determined the homotopy groups $\pi_*(L_2T(1)/(2))$ in [12]. In [9] and [13], the second author separately with Nakai and Shimomura determined the homotopy groups $\pi_*(L_2T(1)/(v_1))$ and proved that the Adams-Novikov spectral sequence for $\pi_*(L_2T(1))$ has a horizontal vanishing line at the E_1-terms. But it seems to be too difficult to work out $\pi_*(L_2T(1))$ from both ways.

In this paper, we will determine the homotopy groups $\pi_*(L_2T(1)/(v_1))$ at odd primes p (Theorem 2.3). This gives a way to approach the homotopy groups of $L_2T(1)$ at odd primes.

2. The Adams spectral sequence for $\pi_*(L_2T(1)/(v_1))$

Let BP denote the Brown-Peterson ring spectrum characterized by

$$\pi_*(BP) = BP_* = \mathbb{Z}(p)[v_1, v_2, \ldots, v_n, \ldots].$$

Here the v_i’s are the Hazewinkel generators, and they are assigned the degree $2(p^i - 1)$. Then (BP_*, BP, BP) becomes a Hopf algebroid, where $BP_*BP = BP_*[t_1, \ldots, t_n, \ldots]$ with $|t_n| = 2(p^n - 1)$. For any spectrum X, we have the Adams-Novikov spectral sequence

$$E_2^{s,t} = Ext_{BP_*BP}^s(BP_*, BP_*(X)) \Rightarrow \pi_{t-s}(X).$$

Let $E(2)$ be the Johnson-Wilson ring spectrum, which yields the Hopf algebroid

$$(E(2)_*, E(2), E(2)) = (\mathbb{Z}(p)[v_1, v_2^{+1}], E(2)_*[t_1, t_2, \ldots]) \otimes_{BP_*} E(2)_*.$$

The Thom map $f : BP \to E(2)$ induces $f_* : BP_* \to E(2)_*$, which satisfies $f_*(v_i) = v_i$ for $i \leq 2$ and 0 for $i > 2$. Then by the change of rings theorem, we see that for an I_2-nil BP_*BP-comodule M,

$$Ext_{BP_*BP}^{s,t}(BP_*, v_2^{-1}M) = Ext_{E_1^{(2)}}^{s,t}(E(2)_*, M \otimes_{BP_*} E(2)_*).$$

Let M be an I_2-nil BP_*BP-comodule and $M[t_1]$ be the polynomial ring over M. To compute the Ext groups $Ext_{BP_*BP}^{s,t}(BP_*, v_2^{-1}M[t_1])$, consider the BP_*-module $E_1(2)_* = E(2)_*[v_3] = \mathbb{Z}(p)[v_1, v_2^{+1}, v_3]$ with action given by sending v_i to
0 for \(i > 3 \). Then \(E_1(2)_* (X) = E_1(2)_* \otimes_{BP_*} BP_* X \) is a homology theory by the Landweber exact functor theorem, and the Hopf algebroid structure

\[
(E_1(2)_*, E_1(2)_*, E_1(2)) = (E_1(2)_*, E_1(2)_*[t_1, t_2, \cdots] \otimes_{BP_*} E_1(2)_*)
\]
is induced from \((BP_*, BP_* BP)\). By the change of rings theorem we have

\[
Ext^{s,t}_{BP_* BP}(BP_* v_2^{-1} M[t_1]) = Ext^{s,t}_{E_1(2)_*, E_1(2)_*}(E_1(2)_*, E_1(2)_* \otimes_{BP_*} M[t_1])
\]
(\text{cf. [2]}).

Let

\[
\Gamma(2, 2) = E_1(2)_*/(t_1) = E_1(2)_*[t_2, t_3, \cdots] \otimes_{BP_*} E_1(2)_*,
\]
and the Hopf algebroid structure of \((E_1(2)_*, \Gamma(2, 2))\) be the one induced from that of \((BP_*, BP_* BP)\). Noting that

\[
E_1(2)_* \otimes_{BP_*} M[t_1] = E_1(2)_* E_1(2)_*/\Gamma(2, 2) E_1(2)_* \otimes_{BP_*} M,
\]
we have the change of rings theorem

\[
Ext^{s,t}_{E_1(2)_*, E_1(2)_*}(E_1(2)_*, E_1(2)_* \otimes_{BP_*} M[t_1]) = Ext^{s,t}_{\Gamma(2, 2)}(E_1(2)_*, E_1(2)_* \otimes_{BP_*} M).
\]

Let \(M_0^2 = E_1(2)_*/(p, v_1) \), \(L_1^1 = E_1(2)_*/(p^{\infty}, v_1) \) and \(Ext^{s,t}_{\Gamma(2, 2)}(E_1(2)_*, M) = H^{*,*}(M) \) for short. We have the short exact sequence of \(\Gamma(2, 2) \)-comodules

\[
0 \rightarrow M_0^2 \xrightarrow{1/p} L_1^1 \xrightarrow{p} L_1^1 \rightarrow 0.
\]

This short exact sequence induces the following long exact sequence:

\[
\cdots \rightarrow H^{*,*} M_0^2 \xrightarrow{1/p} H^{*,*} L_1^1 \xrightarrow{p} H^{*,*} L_1^1 \xrightarrow{\delta} H^{*+1,*} M_0^2 \rightarrow \cdots.
\]

To compute \(H^{*,*} M_0^2 \), let \(K_1(2)_* = E_1(2)_*/(p, v_1) = \mathbb{Z}/p[v_2^{\pm 1}, v_3] \) and

\[
\Sigma(2, 2) = K_1(2)_* \otimes_{BP_*} \Gamma(2, 2) \otimes_{BP_*} K_1(2)_* = K_1(2)[t_2, t_3, \cdots]/(t_i^p - t_i),
\]

\[
S(2, 2) = \mathbb{Z}/p \otimes_{K_1(2)_*} \Gamma(2, 2) \otimes_{K_1(2)_*} \mathbb{Z}/p = \mathbb{Z}/p[t_2, t_3, \cdots]/(t_i^p - t_i),
\]

where \(K_1(2)_* \) acts on \(\mathbb{Z}/p \) by sending \(v_2^{\pm 1} \) and \(v_3 \) to 1. Recalling from [7], 6.3.7, that the Adams-Novikov \(E_2 \)-term for \(\pi_*(L_2 T(1)/(p, v_1)) \) is \(H^{*,*} M_0^2 \), we have

\[
\text{Ext}_{E_1(2)_*, E_1(2)_*}(E_1(2)_*, E_1(2)_*/(p, v_1)) \cong \text{Ext}_{\Gamma(2, 2)}(E_1(2)_*, E_1(2)_*/(p, v_1)) = H^{*,*} M_0^2
\]
\[
\cong \text{Ext}_{S(2, 2)}(K_1(2)_*, K_1(2)_*) \cong \mathbb{Z}/p[v_2^{\pm 1}, v_3] \otimes \text{Ext}_{S(2, 2)}(\mathbb{Z}/p, \mathbb{Z}/p) \cong \mathbb{Z}/p[v_2^{\pm 1}, v_3] \otimes \mathbb{Z}[h_2^0, h_1^0, h_0^1, h_1^1],
\]

where the \(h_2^0 \) denotes the cohomology class represented by \(t_i^p \). Let \(\tilde{h}_2^1 = v_2^p h_2^1 + v_2^{-1} h_2^0 \) and \(\tilde{h}_3^1 = h_3^1 + v_2^{-p} v_3 h_3^1 - v_3 h_2^0 \). It is easy to see that

\[
H^{*,*} M_0^2 = \mathbb{Z}/p[v_2^{\pm 1}, v_3] \otimes \mathbb{Z}[h_2^0, h_1^0, h_2^1, h_3^1].
\]

Noticing that the first nontrivial Adams-Novikov differential appears at \(d_{2p-1} \) and

\[
\text{Ext}_{BP_* BP}^{s,t}(BP_*, BP_*(L_2 T(1)/(p, v_1))) = 0
\]
for \(s > 4 \), we see that the Adams-Novikov spectral sequence for \(\pi_*(L_2 T(1)/(p, v_1)) \) collapses and \(H^{*,*} M_0^2 \cong \pi_*(L_2 T(1)/(p, v_1)) \).
In this paper we will compute the Adams-Novikov E_2-terms for $\pi_*(L_2T(1)/(p^\infty, v_1))$ by the p-Beckstein spectral sequence (the E_2-terms collapse also). Then by the long exact sequence

$$\cdots \to \pi_n(L_2T(1)/(v_1)) \to \pi_n(L_0T(1)/(v_1)) \to \pi_n(L_2T(1)/(p^\infty, v_1)) \to \cdots,$$

we could determine the homotopy groups $\pi_*(L_2T(1)/(v_1))$.

To state our results, we decompose the module $H^{**}M_2^0$ into the direct sum of

$$\begin{align*}
(C_0 & \oplus (C_1 \oplus I_1) \oplus I_2) \otimes E[h_2] \quad \text{and} \quad (\widetilde{h_3}C_0 \oplus \widetilde{h_3}h_3C_0) \otimes E[h_2^0, h_3^0],
\end{align*}$$

where

- $C_0 = \mathbb{Z}/p \{ v_2^{mp^n} v_3^{p^m} | 0 \leq m, n \leq \infty \}$,
- $C_1 = C_0^0 \oplus C_1^1$,
- $C_0^0 = \mathbb{Z}/p \{ v_2^{mp^n} v_3^{p^m-1} h_3^0 | 0 \leq n < m \leq \infty \}$,
- $C_1^1 = \mathbb{Z}/p \{ v_2^{s_p^n} v_3^{p^m} h_2^0 | 0 \leq m < n \leq \infty \}$,
- $I_1 = I_1^0 \oplus I_1^1$,
- $I_1^0 = \mathbb{Z}/p \{ v_2^{s_p^n} v_3^{p^m-1} h_3^0 | 0 \leq m \leq n < \infty, m \leq \infty \}$,
- $I_1^1 = \mathbb{Z}/p \{ v_2^{s_p^n-1} v_3^{p^m} h_2^0 | 0 \leq n < m \leq \infty \}$,
- $I_2 = \mathbb{Z}/p \{ v_2^{s_p^n-1} v_3^{p^m-1} h_2^0 h_3^0 | 0 \leq m, n \leq \infty, m < \infty \}$.

Remark. For $m = \infty$ or $n = \infty$, the integers t and s will be viewed as 0 separately; otherwise $p \nmid s$ ($s \in \mathbb{Z}$) and $p \nmid t$ ($t > 0$).

Based on these modules, we introduce the submodules of $H^{**}L_1^1$:

- $\widetilde{C}_0 = \mathbb{Z}(p) \{ v_2^{s_p^n} v_3^{p^m} / p^{\min(m,n)+1} | 0 \leq m, n \leq \infty \}$,
- $\widetilde{C}_1 = \widetilde{C}_1^0 \oplus \widetilde{C}_1^1$,
- $\widetilde{C}_1^0 = \mathbb{Z}(p) \{ v_2^{s_p^n} v_3^{p^m-1} h_3^0 / p^{n+m+1} | 0 \leq n < m \leq \infty \}$,
- $\widetilde{C}_1^1 = \mathbb{Z}(p) \{ v_2^{s_p^n-1} v_3^{p^m} h_2^0 / p^{n+m+1} | 0 \leq m \leq n \leq \infty \}$,
- $\widetilde{h_3}C_0 = \mathbb{Z}(p) \{ v_2^{s_p^n} v_3^{p^m} h_3^0 / p | 0 \leq m, n \leq \infty \}$,

where x/p^k is of order p^k in the $\mathbb{Z}(p)$-module $H^{**}L_1^1$ and x/p is the image of x under the map $1/p : H^{**}M_2^0 \to H^{**}L_1^1$. $1/p^\infty$ represents $\{1/p^k | k > 0\}$, where $1/p^k$ is of order p^k.

Theorem 2.2. $H^{**}L_1^1$ and then the homotopy groups of $L_2T(1)/(p^\infty, v_1)$ are isomorphic to the direct sum of

$$(\widetilde{C}_0 \oplus \widetilde{C}_1) \otimes E[h_2^0] \quad \text{and} \quad \widetilde{h_3}C_0 \otimes E[h_2^0, h_3^0].$$

Theorem 2.3. The homotopy groups of $L_2T(1)/(v_1)$ are isomorphic to

$$\pi_*(L_2T(1)/(v_1)) = \mathbb{Z}(p) \oplus (\pi_*(L_2T(1)/(p^\infty, v_1)) - \mathbb{Q}/\mathbb{Z}(p)).$$

Proof. From $H^{**}p^{-1}BP_*(t_1)/(v_1) = \mathbb{Q}$, we see that $\pi_*(L_0T(1)/(v_1)) = \mathbb{Q}$ concentrated in degree 0. Considering the long exact sequence of homotopy groups

$$\cdots \to \pi_*(L_2T(1)/(v_1)) \to \pi_*(L_0T(1)/(v_1)) \to \pi_*(L_2T(1)/(p^\infty, v_1)) \to \cdots,$$
induced by the cofiber sequence
\[L_2 T(1)/(v_1) \to L_0 T(1)/(v_1) \to L_2 T(1)/(p^\infty, v_1), \]
we get the theorem. \[\square\]

3. SOME ELEMENTS IN THE COBAR COMPLEX

Consider the Hopf algebroid \((BP_*, \Gamma(2))\) and \((E_1(2)_*, \Gamma(2, 2))\), where
\[\Gamma(2) = BP_*BP/(t_1) = BP_*[t_2, t_3, \cdots]. \]
The structure maps \(\eta_R\) and \(\Delta\) are induced from \(\eta_R : BP_* \to BP_*BP = BP_*[t_1, t_2, t_3, \cdots]\) and \(\Delta : BP_*BP \to BP_*BP \otimes_{BP_*} BP_*BP\). Using the Hazewinkel generators \(v_i\) of \(BP_*\) defined by
\[v_n = pm_n - \sum_{i=1}^{n-1} m_i v_{n-i}^i, \]
and Quillen’s formulae
\[\eta_R(m_n) = \sum_{i+j=n} m_i t_j^i, \]
\[\sum_{i+j=n} m_i \Delta(t_j)^i = \sum_{i+j+k=n} m_i t_j^i \otimes t_k^{i+j}, \]
we have:

Lemma 3.1. In the Hopf algebroid \((BP_*, \Gamma(2))\), the right unit \(\eta_R\) and the coproduct \(\Delta\) act as follows:

\[\eta_R(v_1) = v_1, \]
\[\eta_R(v_2) = v_2 + pt_2, \]
\[\eta_R(v_3) = v_3 + pt_3 \mod (v_1), \]
\[\eta_R(v_4) = v_4 + v_2 t_2^2 - v_2^2 t_2 + pt_4 \mod (p^2, v_1), \]
\[\eta_R(v_5) = v_5 + v_3 t_2^3 + v_2 t_2^3 - v_2^3 t_2 - v_2^3 t_3 + pt_5 \mod (p^2, v_1), \]
\[\Delta(t_i) = t_i \otimes 1 + 1 \otimes t_i \]
\[\Delta(t_4) = t_4 \otimes 1 + t_2 \otimes t_2^3 + 1 \otimes t_4 - v_2 b_{2.1}, \]
\[\Delta(t_5) = t_5 \otimes 1 + t_3 \otimes t_2^3 + t_2 \otimes t_3^2 + 1 \otimes t_5 - v_2 b_{3.1} - v_3 b_{2.2}, \]
where \(p \cdot b_{i,j} = \Delta(t_i)^{i+1} - t_i^{i+1} \otimes 1 - 1 \otimes t_i^{i+1} \) for \(i = 2, 3\). Thus in
\[\Gamma(2, 2) = E_1(2)_* \otimes_{BP_*} \Gamma(2) \otimes_{BP_*} E_1(2)_*, \]

\[(3.2) \quad v_2 t_2^2 = v_2^2 t_2 - pt_4 \mod (p^2, v_1), \]
\[v_3 t_3^2 = v_3^2 t_4 + v_3^3 t_2 - v_3 t_3^3 + pt_5 \mod (p^2, v_1). \]

Proof. The formulae follow by sending \(t_1\) and \(v_i\) for \(i \geq 4\) to 0. \[\square\]

Lemma 3.3. In the cobar complex \(\Omega_{\Gamma(2, 2)}^{1,0}(E_1(2)_*/(p^{n+1}, v_1^n))\), there is a cocycle \(\zeta\) for each \(n\), which represents the cohomology class \(h_2^1 = v_2^{-p} h_1^1 + v_2^{-1} h_2^0\) of \(H^{1,0} M_2^1\).
Proof. From \cite{13} and \cite{14}, there is the cocycle $\zeta_n = v_2^{-p} t_2^p + v_2^{-1} t_2 + \cdots$ in the cobar complex $\Omega_{E(2), E(2)}(E(2), (p^{n+1}, t_1^p))$ for each n and prime $p > 2$, which represents the cohomology class $v_2^{-p} h_2^{1} + v_2^{-1} h_2^{0}$ of $\text{Ext}^{1,0}_{K(2), K(2)}(K(2)_*, K(2)_*)$. By the change of rings isomorphism

\[\text{Ext}^{*,*}_{BP, BP}(BP_*, v_2^{-1} BP_*/(p^{n+1}, t_1^p)) \cong \text{Ext}^{*,*}_{E(2), E(2)}(E_2, E_2)/(p^{n+1}, t_1^p) \]

we get a cocycle $\zeta_n \in \Omega_{BP, BP}(v_2^{-1} BP_*/(p^{n+1}, t_1^p))$. Consider the BP_*-comodule homomorphism $K(2)_* \to K(2)_*[t_1]$ and $v_2^{-1} BP_*/(p^{n+1}, t_1^p) \to v_2^{-1} BP_* [t_1]/(p^{n+1}, t_1^p)$. Then we see that $v_2^{-p} h_2^{1} + v_2^{-1} h_2^{0} \in \text{Ext}^{1,0}_{K(2), K(2)}(K(2)_*, K(2)_*)$ is sent to the cohomology class

\[v_2^{-p} h_2^{1} + v_2^{-1} h_2^{0} \in \text{Ext}^{1,0}_{K(2), K(2)}(K(2)_*, K(2)_*[t_1]). \]

Thus this ζ_n is sent to $\zeta_n \in \Omega_{BP, BP}(v_2^{-1} BP_*/(p^{n+1}, t_1^p))$, which represents the cohomology class $v_2^{-p} h_2^{1} + v_2^{-1} h_2^{0} \in H^{1,0} M_2^0$. Again by the change of rings isomorphism

\[\text{Ext}^{*,*}_{BP, BP}(BP_*, v_2^{-1} BP_*[t_1]/(p^{n+1}, t_1^p)) \cong \text{Ext}^{*,*}_{E(1,2), E(1,2)}(E_2, E_2)/(p^{n+1}, t_1^p), \]

we get the cocycle $\zeta \in \Omega_{E(1,2), E(1,2)}(E_2, (p^{n+1}, t_1^p))$.\]

\[d(t_2^p) \equiv pt_2^p \zeta - (\zeta - 2v_2^{-p} t_2^p) + pv_2^p v_2^{-p} t_2^p \otimes v_2^{-1} t_2 \mod (p^2, v_1). \]

Proof. From (3.2), we see that $v_2^{-p} t_2^p \equiv t_2^p + v_2^{-p} v_2^p t_2^p - v_2^{-1} v_2^p t_2$ mod(p, v_1).

Then from Lemma 3.1, we compute that, mod(p^2, v_1),

\[d(v_2^{-p} t_2^p) = -pv_2^{-p} v_2^p t_2 \]

\[d(pt_2^p) \equiv pv_2^p v_2^{-p} t_2 \otimes v_2^{-1} t_2 \]

\[d(-pv_2^{-p} t_2^p) \equiv -pv_2^{-p} v_2^p t_2 \otimes v_2^{-1} t_2. \]

The sum of them gives rise to ζ_0 as desired, where the underlined elements with the same subscripts amount to zero.\]

\[d \left(\frac{1}{2} pv_2^{-p} t_2 \right) \equiv -pv_2^{-p} v_2^p t_2 \otimes t_2. \]
4. The connecting homomorphisms

Consider the short exact sequence
\[0 \to M_2^0 \xrightarrow{1/p} L_1^1 \xrightarrow{p} L_1^1 \to 0 \]
and the induced long exact sequence
\[\cdots \to H^s M_2^0 \xrightarrow{1/p} H^s L_1^1 \xrightarrow{p} H^s L_1^1 \xrightarrow{\delta_s} H^{s+1} M_2^0 \to \cdots. \]

Lemma 4.1. For the connecting homomorphism \(\delta_0 : H^0 L_1^1 \to H^1 M_2^0 \) we have:

1. For \(0 \leq m \leq n \leq \infty \),
 \[\delta_0 \left(\frac{v_2^{sp^n} v_3^{tp^m}}{p^{n+1}} \right) = tv_2^{sp^n} v_3^{tp^m} - h_3^0 + sp^{n-m} v_2^{sp^n} - v_3^{tp^m} h_2^0. \]

2. For \(0 \leq n < m \leq \infty \),
 \[\delta_0 \left(\frac{v_2^{sp^n} v_3^{tp^m}}{p^{n+1}} \right) = sv_2^{sp^n - h_2^0}. \]

Proof. This is a direct computation from
\[d(v_2^{sp^n}) = sp^{n+1} v_2^{sp^n - t_2} + \cdots, \quad d(v_3^{tp^m}) = tp^{m+1} v_3^{tp^m - t_3} + \cdots \mod (v_1), \]
and \(h_2^0, h_3^0 \) are represented by \(t_2, t_3 \) respectively. \(\square \)

From Lemma 4.1, we see that the cokernel of \(\delta_0 \) is \(C_1^0 \oplus C_1^1 \oplus \widetilde{h_3^0} C_0 \oplus \widetilde{h_2^0} C_0 \).

Lemma 4.2. The connecting homomorphism \(\delta_1 : H^1 L_1^1 \to H^2 M_2^0 \) acts on the submodules \(C_1^0 \oplus C_1^1 \) as:

1. For \(0 \leq n < m < \infty \),
 \[\delta_1 \left(\frac{v_2^{sp^n} v_3^{tp^m - h_3^0}}{p^{m+1}} \right) = sv_2^{sp^n - h_3^0} v_3^{tp^m - h_2^0 h_3^0}. \]

2. For \(0 \leq m \leq n \leq \infty \),
 \[\delta_1 \left(\frac{v_2^{sp^n - h_3^0} v_3^{tp^m}}{p^{n+1}} \right) = tv_2^{sp^n - h_3^0} v_3^{tp^m} - h_2^0 h_3^0. \]

Proof. From
\[d(v_2^{sp^n}) \equiv sp^{n+1} v_2^{sp^n - t_2} + \cdots, \quad d(v_3^{tp^m}) \equiv tp^{m+1} v_3^{tp^m - t_3} + \cdots \mod (v_1), \]
we see that for \(s \neq 0, t \neq 0, \)
\[d(v_2^{sp^n - t_2} + \cdots) \equiv 0, \quad d(v_3^{tp^m - t_3} + \cdots) \equiv 0 \mod (v_1). \]
For \(n = \infty \), setting
\[\overline{v_2^{t_2}} = \frac{1}{p} \log(1 + pv_2^{-1} t_2) = \sum_{n>0} (-1)^{n-1} \frac{(pv_2^{-1} t_2)^n}{pn}, \]
one can easily see that \(pv_2^{-1} t_2 = d(\log(v_2)) \). Thus \(d(\overline{v_2^{t_2}}) = 0 \). The lemma follows from
\[d(v_2^{sp^n} v_3^{tp^m - t_3}) = d(v_2^{sp^n}) \cdot (v_3^{tp^m - t_3}) \]
and
\[d(v_2^{sp\cdot 1}t_2v_3^{tp\cdot m}) = -(v_2^{sp\cdot 1}t_2) \cdot d(v_3^{tp\cdot m}). \]

Lemma 4.3. The connecting homomorphism \(\delta_1 : H^1L_1 \rightarrow H^2M_2^0 \) acts on \(\sim C_0 \)
\[
\delta_1 \left(\frac{v_2^{sp\cdot n}v_3^{tp\cdot m}h_3}{p} \right) = v_2^{sp\cdot n}v_3^{tp\cdot m} \left(h_3^1(h_3^1 - 2v_2^{sp\cdot 1}h_2^0) + v_3^p v_2^{sp\cdot 1}h_2^1h_2^0 \right) + \ldots .
\]

Proof. The proof follows from the definition of \(\sim t_0 \) (cf. Lemma 3.4). \(\Box \)

Proof of Theorem 2.2. From Lemmas 4.1-4.3 we see that the submodules \(\sim C_0, \sim C_1 \)
and \(h_2^1C_0 \) make the following sequences exact:
\[
0 \rightarrow C_0 \xrightarrow{1/p} C_0 \xrightarrow{p} C_0 \xrightarrow{\delta_0} I_1 \rightarrow 0;
0 \rightarrow C_1 \xrightarrow{1/p} \sim C_1 \xrightarrow{p} \sim C_1 \xrightarrow{\delta_1} I_2 \rightarrow 0,
0 \rightarrow h_3^1C_0 \xrightarrow{1/p} \sim h_3^1C_0 \xrightarrow{p} h_3^1C_0 \xrightarrow{\delta_1} h_3^1h_3^1C_0 \rightarrow 0,
0 \rightarrow h_3^1C_0 \xrightarrow{1/p} \sim h_3^1C_0 \xrightarrow{p} h_3^1C_0 \xrightarrow{\delta_1} h_3^1I_1 \rightarrow 0;
0 \rightarrow \sim h_3^1C_0 \xrightarrow{1/p} \sim h_3^1C_0 \xrightarrow{p} \sim h_3^1C_0 \xrightarrow{\delta_2} \sim h_3^1I_2 \rightarrow 0,
0 \rightarrow h_3^0h_3^0h_3^0C_0 \xrightarrow{1/p} h_3^0h_3^0h_3^0C_0 \xrightarrow{p} h_3^0h_3^0h_3^0C_0 \xrightarrow{\delta_2} h_3^0h_3^0h_3^0C_0 \rightarrow 0,
0 \rightarrow h_3^0h_3^0h_3^0C_0 \xrightarrow{1/p} h_3^0h_3^0h_3^0C_0 \xrightarrow{p} h_3^0h_3^0h_3^0C_0 \xrightarrow{\delta_2} h_3^0h_3^0h_3^0C_0 \rightarrow 0;
0 \rightarrow h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0C_0 \xrightarrow{1/p} h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0C_0 \xrightarrow{p} h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0C_0 \xrightarrow{\delta_3} h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0h_3^0C_0 \rightarrow 0.
\]

It is easy to prove that
\[
\text{coker } \delta_0 = C_0^0 \oplus C_1^1 \oplus \sim h_3^3C_0 \oplus h_3^2C_0,
\text{coker } \delta_1 = \sim h_2^2C_1 \oplus h_2^2h_3^3C_0 \oplus h_2^1h_3^1C_0,
\text{coker } \delta_2 = h_2^0h_3^0h_3^1C_0,
\text{coker } \delta_3 = 0.
\]

So we can construct \(p \)-torsion submodules \(B^* \) of \(H^{*,*}L_1 \):
\[
B^0 = \sim C_0,
B^1 = \sim C_1 \oplus \sim h_3^3C_0 \oplus h_3^2C_0,
B^2 = \sim h_2^2C_1 \oplus h_2^2h_3^3C_0 \oplus h_2^1h_3^1C_0,
B^3 = h_2^0h_3^0h_3^1C_0,
B^k = 0 \ (k \geq 4).
\]
such that the following diagram is commutative:

\[
\cdots \to H^* M_0^1 \to B^* \to B^* \to H^{*+1} M_0^1 \to \cdots
\]

\[
\cdots \to H^* M_0^1 \to H^* L_1^1 \to H^* L_1^1 \to H^{*+1} M_0^1 \to \cdots
\]

Then from [5], Remark 3.11, we see that

\[
H^{*,*} L_1^1 = \left(\widehat{C_0} \oplus \widehat{C_1} \right) \otimes E[\widehat{h_2^1}] \oplus \left(\widehat{h_3^1} C_0 \otimes E[h_2^0, h_3^0] \right).
\]

Similarly, we see that \(H^{*,*} L_1^i = 0 \) for \(s > 3 \) and the Adams-Novikov \(E_2 \)-term for \(\pi_*(L_2 T(1)/(p^\infty, v_1)) \) collapses. This completes the proof of Theorem 2.2. \(\square \)

References

[16] Wang, X., $\pi_*(L_2T(1)/(v_1))$ and its applications in computing $\pi_*(L_2T(1))$ at the prime two, Forum Math. 19 (2007), 127-147. MR2296069 (2008a:55010)

School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

E-mail address: yuanzhchina@gmail.com