Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The homotopy groups of $ L_2T(1)/(v_1)$ at an odd prime


Authors: Liu Xiugui, Wang Xiangjun and Yuan Zihong
Journal: Proc. Amer. Math. Soc. 138 (2010), 1143-1152
MSC (2000): Primary 55Q99, 55Q52
DOI: https://doi.org/10.1090/S0002-9939-09-10138-7
Published electronically: October 28, 2009
MathSciNet review: 2566579
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, all spectra are localized at an odd prime. Let $ T(1)$ be the Ravenel spectrum characterized by $ BP_{\ast}$-homology as $ BP_{\ast}[t_1]$, $ T(1)/(v_1)$ be the cofiber of the self-map $ v_1: \Sigma^{2p-2}T(1)\rightarrow T(1)$ and $ L_2$ denote the Bousfield localization functor with respect to $ v_2^{-1}BP_{\ast}$. In this paper, we determine the homotopy groups of $ L_2T(1)/(v_1)$.


References [Enhancements On Off] (What's this?)

  • 1. Hovey, M. and Strickland N., Morava $ K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666. MR 1601906 (99b:55017)
  • 2. Hovey, M. and Strickland N., Comodules and Landweber exact homology theories, Adv. Math. 192 (2005), 427-456. MR 2128706 (2006e:55007)
  • 3. Ichigi, I., Shimomura, K. and Wang, X., On subgroups of $ \pi_*(L_2T(1)\wedge M(2))$ at the prime two, Bol. Soc. Mat. Mexicana (3) 13 (2007), 207-230. MR 2468037
  • 4. Kamiya, Y. and Shimomura, K., The homotopy groups $ \pi_*(L_2V(0)\wedge T(k))$, Hiroshima Math. J. 31 (2001), 391-408. MR 1870983 (2002j:55010)
  • 5. Miller, H., Ravenel, D. C. and Wilson, S., Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), 469-516. MR 0458423 (56:16626)
  • 6. Nakai, H. and Shimomura, K., On the homotopy groups of $ E(n)$-local spactra with unusual invariant ideals, Geometry and Topology Monographs 10 (2007), 319-332. MR 2402792 (2009e:55021)
  • 7. Ravenel, D. C., Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press (1986). MR 860042 (87j:55003)
  • 8. Ravenel, D. C., Localization with respect to certain periodic homology theories, American Journal of Mathematics 106 (1984), 351-414. MR 737778 (85k:55009)
  • 9. Ravenel, D. C., Nilpotence and Periodicity in Stable Homotopy Theory, Princeton University Press (1992). MR 1192553 (94b:55015)
  • 10. Ravenel, D. C., The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297. MR 0431168 (55:4170)
  • 11. Ravenel, D. C., The method of infinite descent in stable homotopy theory. I, Contemporary Mathematics, 293, Amer. Math. Soc., Providence, RI, 2002, 251-284. MR 1890739 (2003f:55009)
  • 12. Shimomura, K., The homotopy groups of the $ L_2$-localized Mahowald spectrum $ X\langle 1\rangle $, Forum Math. 7 (1995), 685-707. MR 1359422 (96m:55023)
  • 13. Shimomura, K. and Yabe, A., The homotopy groups $ \pi_*(L_2S^0)$, Topology 34 (1995), 261-289. MR 1318877 (96b:55015)
  • 14. Shimomura, K. and Wang, X., The homotopy groups of $ \pi_*(L_2S^0)$ at the prime 3, Topology 41 (2002), 1183-1198. MR 1923218 (2003g:55020)
  • 15. Shimomura, K. and Wang, X., The Adams-Novikov $ E_2$-term for $ \pi_*(L_2S^0)$ at the prime 2, Math. Z. 241 (2002), 271-311. MR 1935487 (2003m:55018)
  • 16. Wang, X., $ \pi_*(L_2T(1)/(v_1))$ and its applications in computing $ \pi_*(L_2T(1))$ at the prime two, Forum Math. 19 (2007), 127-147. MR 2296069 (2008a:55010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55Q99, 55Q52

Retrieve articles in all journals with MSC (2000): 55Q99, 55Q52


Additional Information

Liu Xiugui
Affiliation: School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

Wang Xiangjun
Affiliation: School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

Yuan Zihong
Affiliation: School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
Email: yuanzhchina@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-09-10138-7
Keywords: Stable homotopy, Adams-Novikov spectral sequence, chromatic spectral sequence
Received by editor(s): August 1, 2008
Received by editor(s) in revised form: July 22, 2009
Published electronically: October 28, 2009
Additional Notes: The authors were partially supported by NSFC grant No. 10771105.
Communicated by: Paul Goerss
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society