Proof of a dynamical Bogomolov conjecture for lines under polynomial actions

Authors:
Dragos Ghioca and Thomas J. Tucker

Journal:
Proc. Amer. Math. Soc. **138** (2010), 937-942

MSC (2010):
Primary 37P05; Secondary 14G25, 11C08

DOI:
https://doi.org/10.1090/S0002-9939-09-10182-X

Published electronically:
October 20, 2009

MathSciNet review:
2566560

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a dynamical version of the Bogomolov conjecture in the special case of lines in under the action of a map , where each is a polynomial in of the same degree.

**[AH96]**P. Atela and J. Hu,*Commuting polynomials and polynomials with same Julia set*, Internat. J. Bifur. Chaos Appl. Sci. Engrg.**6**(1996), no. 12A, 2427-2432. MR**1445904 (98c:58133)****[BE87]**I. N. Baker and A. Erëmenko,*A problem on Julia sets*, Ann. Acad. Sci. Fenn. Ser. A I Math.**12**(1987), no. 2, 229-236. MR**951972 (89g:30047)****[BH05]**M. H. Baker and L.-C. Hsia,*Canonical heights, transfinite diameters, and polynomial dynamics*, J. Reine Angew. Math.**585**(2005), 61-92. MR**2164622 (2006i:11071)****[Bea90]**A. F. Beardon,*Symmetries of Julia sets*, Bull. London Math. Soc.**22**(1990), no. 6, 576-582. MR**1099008 (92f:30033)****[Bea91]**A. F. Beardon,*Iteration of rational functions*, Springer-Verlag, New York, 1991. MR**1128089 (92j:30026)****[Bea92]**A. F. Beardon,*Polynomials with identical Julia sets*, Complex Variables Theory Appl.**17**(1992), no. 3-4, 195-200. MR**1147050 (93k:30033)****[BG06]**E. Bombieri and W. Gubler,*Heights in Diophantine geometry*, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR**2216774 (2007a:11092)****[Bog91]**F. A. Bogomolov,*Abelian subgroups of Galois groups*, Izv. Akad. Nauk SSSR Ser. Mat.**55**(1991), no. 1, 32-67. MR**1130027 (93b:12007)****[CS93]**G. S. Call and J. Silverman,*Canonical heights on varieties with morphism*, Compositio Math.**89**(1993), 163-205. MR**1255693 (95d:11077)****[DH93]**A. Douady and J. H. Hubbard,*A proof of Thurston's topological characterization of rational functions*, Acta Math.**171**(1993), no. 2, 263-297. MR**1251582 (94j:58143)****[GTZ08]**D. Ghioca, T. J. Tucker, and M. E. Zieve,*Intersections of polynomials orbits, and a dynamical Mordell-Lang conjecture*, Invent. Math.**171**(2008), no. 2, 463-483. MR**2367026 (2008k:37099)****[Mil99]**J. Milnor,*Dynamics in one complex variable*, Vieweg, Braunschweig, 1999. MR**1721240 (2002i:37057)****[Mim97]**A. Mimar,*On the preperiodic points of an endomorphism of which lie on a curve*, Ph.D. thesis, Columbia University, 1997.**[Ull98]**E. Ullmo,*Positivité et discrétion des points algébriques des courbes*, Ann. of Math. (2)**147**(1998), no. 1, 167-179. MR**1609514 (99e:14031)****[Zha92]**S. Zhang,*Positive line bundles on arithmetic surfaces*, Ann. of Math. (2)**136**(1992), 569-587. MR**1189866 (93j:14024)****[Zha95a]**S. Zhang,*Positive line bundles on arithmetic varieties*, J. Amer. Math. Soc.**8**(1995), 187-221. MR**1254133 (95c:14020)****[Zha95b]**S. Zhang,*Small points and adelic metrics*, J. Algebraic Geometry**4**(1995), 281-300. MR**1311351 (96e:14025)****[Zha98]**S. Zhang,*Equidistribution of small points on abelian varieties*, Ann. of Math. (2)**147**(1998), no. 1, 159-165. MR**1609518 (99e:14032)****[Zha06]**S. Zhang,*Distributions in Algebraic Dynamics*, Surveys in Differential Geometry, vol. 10, International Press, Somerville, MA, 2006, pp. 381-430. MR**2408228 (2009k:32016)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37P05,
14G25,
11C08

Retrieve articles in all journals with MSC (2010): 37P05, 14G25, 11C08

Additional Information

**Dragos Ghioca**

Affiliation:
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada

Email:
dragos.ghioca@uleth.ca

**Thomas J. Tucker**

Affiliation:
Department of Mathematics, Hylan Building, University of Rochester, Rochester, New York 14627

Email:
ttucker@math.rochester.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-10182-X

Received by editor(s):
October 22, 2008

Received by editor(s) in revised form:
May 1, 2009

Published electronically:
October 20, 2009

Additional Notes:
The first author was partially supported by NSERC

The second author was partially supported by NSA Grant 06G-067 and NSF Grant DMS-0801072.

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.