Characterizations of the solvable radical

Authors:
Paul Flavell, Simon Guest and Robert Guralnick

Journal:
Proc. Amer. Math. Soc. **138** (2010), 1161-1170

MSC (2010):
Primary 20F14, 20D10

DOI:
https://doi.org/10.1090/S0002-9939-09-10066-7

Published electronically:
December 2, 2009

MathSciNet review:
2578510

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there exists a constant with the property: if is a conjugacy class of a finite group such that every elements of generate a solvable subgroup, then generates a solvable subgroup. In particular, using the Classification of Finite Simple Groups, we show that we can take . We also present proofs that do not use the Classification Theorem. The most direct proof gives a value of . By lengthening one of our arguments slightly, we obtain a value of .

**1.**M. Aschbacher,*Finite group theory*, second edition. Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge, 2000. MR**1777008 (2001c:20001)****2.**A. Al-Roqi and P. Flavell,*On the Fitting height of a solvable group that is generated by a conjugacy class of -elements.*Bull. Lond. Math. Soc.**39**(2007), part 6, 973-981. MR**2392820 (2008m:20030)****3.**M. Aschbacher and R. Guralnick,*Some applications of the first cohomology group*, J. Algebra**90**(1984), no. 2, 446-460. MR**760022 (86m:20060)****4.**J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,*Atlas of finite groups*, in Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. MR**827219 (88g:20025)****5.**P. Flavell,*On the Fitting height of a solvable group that is generated by a conjugacy class.*J. London Math. Soc. (2)**66**(2002), 101-113. MR**1911223 (2003f:20024)****6.**N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin,*On the number of conjugates defining the solvable radical of a finite group*, C. R. Acad. Sci. Paris, Ser. I**343**(2006), 387-392. MR**2259878 (2007f:20032)****7.**N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin,*A description of Baer-Suzuki type of the solvable radical of a finite group*, J. Pure and Applied Algebra**213**(2009), 250-258. MR**2467402 (2009i:20045)****8.**N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin,*Baer-Suzuki Theorem for the solvable radical of a finite group*, preprint.**9.**Daniel Gorenstein, Richard Lyons, and Ronald Solomon,*The classification of the finite simple groups. Number 3*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. MR**1490581 (98j:20011)****10.**Simon Guest, A solvable version of the Baer-Suzuki theorem, Trans. Amer. Math. Soc., to appear.**11.**Robert M. Guralnick and William M. Kantor,*Probabilistic generation of finite simple groups*, J. Algebra**234**(2000), no. 2, 743-792, Special issue in honor of Helmut Wielandt. MR**1800754 (2002f:20038)****12.**R. Guralnick, E. Plotkin and A, Shalev, Burnside-type problems related to solvability, Internat. J. Algebra Comput.**17**(2007), 1033-1048. MR**2355682****13.**Robert M. Guralnick and Jan Saxl,*Generation of finite almost simple groups by conjugates*, J. Algebra**268**(2003), no. 2, 519-571. MR**2009321 (2005f:20057)****14.**Martin W. Liebeck,*The classification of finite simple Moufang loops*, Math. Proc. Cambridge Philos. Soc.**102**(1987), no. 1, 33-47. MR**886433 (88g:20146)****15.**Martin W. Liebeck and Jan Saxl,*Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces*, Proc. London Math. Soc. (3)**63**(1991), no. 2, 266-314. MR**1114511 (92f:20003)****16.**G. Malle, J. Saxl, and T. Weigel,*Generation of classical groups*, Geom. Dedicata**49**(1993), no. 1, 85-116. MR**1261575 (95c:20068)****17.**O. Manz and T.R. Wolf,*Representations of Solvable Groups.*London Math. Soc. Lecture Note Series, 185, Cambridge University Press, 1993. MR**1261638 (95c:20013)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
20F14,
20D10

Retrieve articles in all journals with MSC (2010): 20F14, 20D10

Additional Information

**Paul Flavell**

Affiliation:
School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom

Email:
P.J.Flavell@bham.ac.uk

**Simon Guest**

Affiliation:
Department of Mathematics, Baylor University, One Bear Place #97328, Waco, Texas 76798-7328

Email:
Simon_Guest@baylor.edu

**Robert Guralnick**

Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532

Email:
guralnic@usc.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-10066-7

Keywords:
Solvable radical,
generation by conjugates

Received by editor(s):
August 28, 2008

Published electronically:
December 2, 2009

Additional Notes:
The second and third authors were partially supported by NSF grant DMS 0653873.

Communicated by:
Jonathan I. Hall

Article copyright:
© Copyright 2009
American Mathematical Society