Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterizations of the solvable radical


Authors: Paul Flavell, Simon Guest and Robert Guralnick
Journal: Proc. Amer. Math. Soc. 138 (2010), 1161-1170
MSC (2010): Primary 20F14, 20D10
DOI: https://doi.org/10.1090/S0002-9939-09-10066-7
Published electronically: December 2, 2009
MathSciNet review: 2578510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there exists a constant $ k$ with the property: if $ \mathcal{C}$ is a conjugacy class of a finite group $ G$ such that every $ k$ elements of $ \mathcal{C}$ generate a solvable subgroup, then $ \mathcal{C}$ generates a solvable subgroup. In particular, using the Classification of Finite Simple Groups, we show that we can take $ k=4$. We also present proofs that do not use the Classification Theorem. The most direct proof gives a value of $ k=10$. By lengthening one of our arguments slightly, we obtain a value of $ k=7$.


References [Enhancements On Off] (What's this?)

  • 1. M. Aschbacher, Finite group theory, second edition. Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge, 2000. MR 1777008 (2001c:20001)
  • 2. A. Al-Roqi and P. Flavell, On the Fitting height of a solvable group that is generated by a conjugacy class of $ 3$-elements. Bull. Lond. Math. Soc. 39 (2007), part 6, 973-981. MR 2392820 (2008m:20030)
  • 3. M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, J. Algebra 90 (1984), no. 2, 446-460. MR 760022 (86m:20060)
  • 4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, in Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. MR 827219 (88g:20025)
  • 5. P. Flavell, On the Fitting height of a solvable group that is generated by a conjugacy class. J. London Math. Soc. (2) 66 (2002), 101-113. MR 1911223 (2003f:20024)
  • 6. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, On the number of conjugates defining the solvable radical of a finite group, C. R. Acad. Sci. Paris, Ser. I 343 (2006), 387-392. MR 2259878 (2007f:20032)
  • 7. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure and Applied Algebra 213 (2009), 250-258. MR 2467402 (2009i:20045)
  • 8. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, Baer-Suzuki Theorem for the solvable radical of a finite group, preprint.
  • 9. Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. MR 1490581 (98j:20011)
  • 10. Simon Guest, A solvable version of the Baer-Suzuki theorem, Trans. Amer. Math. Soc., to appear.
  • 11. Robert M. Guralnick and William M. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000), no. 2, 743-792, Special issue in honor of Helmut Wielandt. MR 1800754 (2002f:20038)
  • 12. R. Guralnick, E. Plotkin and A, Shalev, Burnside-type problems related to solvability, Internat. J. Algebra Comput. 17 (2007), 1033-1048. MR 2355682
  • 13. Robert M. Guralnick and Jan Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), no. 2, 519-571. MR 2009321 (2005f:20057)
  • 14. Martin W. Liebeck, The classification of finite simple Moufang loops, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 33-47. MR 886433 (88g:20146)
  • 15. Martin W. Liebeck and Jan Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc. (3) 63 (1991), no. 2, 266-314. MR 1114511 (92f:20003)
  • 16. G. Malle, J. Saxl, and T. Weigel, Generation of classical groups, Geom. Dedicata 49 (1993), no. 1, 85-116. MR 1261575 (95c:20068)
  • 17. O. Manz and T.R. Wolf, Representations of Solvable Groups. London Math. Soc. Lecture Note Series, 185, Cambridge University Press, 1993. MR 1261638 (95c:20013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20F14, 20D10

Retrieve articles in all journals with MSC (2010): 20F14, 20D10


Additional Information

Paul Flavell
Affiliation: School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
Email: P.J.Flavell@bham.ac.uk

Simon Guest
Affiliation: Department of Mathematics, Baylor University, One Bear Place #97328, Waco, Texas 76798-7328
Email: Simon_Guest@baylor.edu

Robert Guralnick
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
Email: guralnic@usc.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10066-7
Keywords: Solvable radical, generation by conjugates
Received by editor(s): August 28, 2008
Published electronically: December 2, 2009
Additional Notes: The second and third authors were partially supported by NSF grant DMS 0653873.
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society