AN ENDPOINT ESTIMATE FOR THE CONE MULTIPLIER

YARYONG HEO, SUNGGEUM HONG, AND CHAN WOO YANG

(Communicated by Michael T. Lacey)

ABSTRACT. In this paper we consider an endpoint estimate for high-dimensional cone multipliers.

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

Let \(\hat{\psi} \in C_0^\infty(\mathbb{R}) \) be real-valued and supported in \(\{1 < \tau < 2\} \). Then for each \(\delta > 0 \), we consider the convolution operators \(T^\delta \) associated with the smooth cone multipliers given by

\[
\hat{T^\delta f}(\xi, \tau) = \hat{f}(\xi, \tau) \left(1 - \frac{|\xi|^2}{|\tau|^2} \right)^{\delta} \hat{\psi}(\tau), \quad (\xi, \tau) \in \mathbb{R}^d \times \mathbb{R}.
\]

In the case \(\delta > (d - 1)/2 \), the convolution kernel belongs to \(L^1 \); hence \(T^\delta \) is an \(L^p \)-bounded operator for \(1 \leq p \leq \infty \). In the case \(0 < \delta < (d - 1)/2 \), it is conjectured that \(T^\delta \) is an \(L^p \)-bounded operator for

\[
\delta > \delta(p) := d|1/p - 1/2| - 1/2, \quad 1 < p < \infty.
\]

This conjectured range is the same as for the \(d \)-dimensional Bochner-Riesz multiplier problem. Note that the cone multiplier problem implies the Bochner-Riesz multiplier problem. By now the Bochner-Riesz multiplier problem is understood in the range \(p < (2d + 4)/(d + 4) \), \(d \geq 2 \) (see [5]). But compared to the Bochner-Riesz multiplier, little is known about the cone multiplier, and this conjecture still remains open for any \(d \geq 2 \). There are some partial results for this conjecture (see [3, 4, 5, 6, 7, 10]). In particular, in [10], the first author proved that \(T^\delta \) is an \(L^p \)-bounded operator for \(1 \leq p \leq 2(d - 1)/(d + 1), \delta > \delta(p) \) and \(d \geq 4 \). This is the most recent result for high-dimensional cone multipliers. In this paper we consider an endpoint case \(\delta = \delta(1) = (d - 1)/2 \).

Theorem 1.1. If \(d \geq 4 \), then \(T^{(d-1)/2} \) maps \(L^1(\mathbb{R}^{d+1}) \) to \(L^{1,\infty}(\mathbb{R}^{d+1}) \).

Received by the editors October 6, 2008, and, in revised form, July 8, 2009.

2000 Mathematics Subject Classification. Primary 42B15.

Key words and phrases. Cone multipliers.

The first author was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-357-C00002).

The second author was supported by the Korea Research Foundation Grant funded by the Korean Government (MEST) (No. 2009-0065011).

The third author was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-331-C00016).

Copyright 2009 American Mathematical Society
Reverts to public domain 28 years from publication.
In the case of the Bochner-Riesz means, this result is well known for any dimension $d \geq 2$ (see [12]). But for the cone multiplier there are some additional difficulties; i.e., in the case of the Bochner-Riesz multiplier, the main contribution of the convolution kernel comes from

$$|x|^{-\delta - \frac{d+1}{2}} e^{\pm 2\pi i |x|}, \quad |x| > 1, \quad x \in \mathbb{R}^d,$$

and in the case of the cone multiplier, the main contribution comes from

$$|x|^{-\delta - \frac{d+1}{2}} \psi(t \pm |x|), \quad |x| > 1, \quad (x, t) \in \mathbb{R}^d \times \mathbb{R}.$$

As we can see in Lemma 2.2 and [1, 2], the term $\psi(t \pm |x|)$ in (1.2) plays a similar role as $e^{\pm 2\pi i |x|}$ in (1.1). But the convolution kernel (1.2) of the cone multiplier is defined on $\mathbb{R}^d \times \mathbb{R}$. This makes the cone multiplier problem more difficult than the Bochner-Riesz problem. Even though (1.2) is defined on $\mathbb{R}^d \times \mathbb{R}$, we can see that it is essentially supported in the cone $|t \pm |x|| \leq 1$, and we can use this advantage together with M. Christ’s stopping time arguments (Lemma 2.2).

Remark. Recently, the second author, F. Nazarov and A. Seeger [12] obtained $L^p(\mathbb{R}^{d+1}) \to L^{p, \infty}(\mathbb{R}^{d+1})$ inequalities for the cone multiplier $(1 - |\xi|^2/\tau^2)\chi_\pm^{(1)}$, $(\xi, \tau) \in \mathbb{R}^d \times \mathbb{R}$ with $1 < p < 2(d-1)/(d+1)$ and $d \geq 4$. See also [11] for the improvements upon the existing results in the so-called local smoothing problem for the wave equation in high dimensions.

2. **Reductions and the Proof of Theorem 1.1**

Notation. If q is a dyadic cube in \mathbb{R}^{d+1} with side-length 2^j, we write $\ell(q) = j$. For each $j \in \mathbb{Z}$, D_j denotes the collection of dyadic cubes $q \in \mathbb{R}^{d+1}$ with $\ell(q) = j$, and for each $q \in D_j$, $2q$ denotes $q + [-2^j, 2^j]^{d+1}$. For two quantities A and B we shall write $A \lesssim B$ if $A \leq CB$ for some absolute positive constant C. Also we shall write $A \sim B$ if $A \lesssim B$ and $B \lesssim A$. The Lebesgue measure on \mathbb{R}^{d+1} of a subset E will be denoted by $|E|$.

We need to show that

$$\left| \left\{ (x, t) : |T^{(d-1)/2} f(x, t)| > \alpha \right\} \right| \leq C \alpha^{-1} \|f\|_1,$$

for each $\alpha > 0$. We may assume $f \geq 0$. Also by limiting arguments we may assume that $f \in L^1(\mathbb{R}^{d+1})$ have the form of a finite sum

$$f(x, t) = \sum_{q \in Q} \alpha_q \chi_q(x, t),$$

where $\alpha_q > 0$ and Q is a finite, disjoint collection of dyadic cubes. Moreover if $\ell(q) \geq 0$, then by dividing q as smaller dyadic subcubes we may assume $\ell(q) = \ell \ll 0$ for all $q \in Q$. Let us explain the limiting arguments. Let $f \in L^1(\mathbb{R}^{d+1})$ with $f \geq 0$. Then there exists a sequence $\{f_m\}_{m=1}^\infty$ of functions such that each f_m has the form as in (2.2) and $\lim_{m \to \infty} \|f_m - f\|_1 = 0$. Also by choosing an appropriate subsequence we may assume

$$\|f_m\|_1 \leq 2\|f\|_1, \quad \|f_{m+1} - f_m\|_1 \leq 2^{-2m}\|f\|_1$$

for each m.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Note that

\[T^{\frac{d}{2}} f(x, t) = \lim_{m \to \infty} T^{\frac{d}{2}} f_m(x, t) \]

\[= T^{\frac{d}{2}} f_1(x, t) + \sum_{m=1}^{\infty} T^{\frac{d}{2}} (f_{m+1} - f_m)(x, t) \]

for almost every \((x, t)\). Hence if we prove (2.1) under the condition (2.2), then

\[|\{ |T^{\frac{d}{2}} f(x, t)| > 2^\alpha \}| \]

\[\leq \bigg| \{ |T^{\frac{d}{2}} f_1(x, t)| > \alpha \} \bigg| + \sum_{m=1}^{\infty} \bigg| \{ |T^{\frac{d}{2}} (f_{m+1} - f_m)(x, t)| > 2^{-m} \alpha \} \bigg| \]

\[\leq C\alpha^{-1} \|f_1\|_1 + \sum_{m=1}^{\infty} C(2^{-m}\alpha)^{-1} \|f_{m+1} - f_m\|_1 \]

\[\leq C\alpha^{-1} \|f\|_1. \]

Therefore, from now on we assume that

\[f = \sum_{q \in \mathbf{Q}} \alpha_q |q| \frac{\chi_q}{|q|} = \sum_{q \in \mathbf{Q}} \lambda_q a_q, \]

where \(\lambda_q = \alpha_q |q|, a_q = \chi_q/|q|\) and \(\mathbf{Q}\) is a finite, disjoint collection of dyadic cubes in \(D_\varepsilon\) for some \(\varepsilon \ll 0\).

Next we compute the inverse Fourier transform \(K^\delta(x, t)\) of \((1 - |\xi/\tau|^2)^\frac{\delta}{d} \hat{\psi}(\tau)\). First note that

\[K^\delta(x, t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{2\pi i r(x, \xi + t)(1 - \frac{|\xi|^2}{\tau^2})^\frac{\delta}{2}} e^{2\pi i x \tau} \hat{\psi}(\tau) d\tau d\xi, \]

and by integration by parts via

\[\frac{\partial}{\partial \tau} e^{2\pi i r(x, \xi + t)} = 2\pi i (x \cdot \xi + t) e^{2\pi i r(x, \xi + t)}, \]

we have

\[|K^\delta(x, t)| \leq C_N \sup_{|\xi| \leq 1} (1 + |x \cdot \xi + t|)^{-N} \quad \text{for each } N > 0. \]

From this, it is easy to see that \(K^\delta(x, t)\chi_{\{|x| \leq 1\}} \in L^1(\mathbb{R}^{d+1})\). Therefore, from now on, we assume \(|x| \geq 1\). The inverse Fourier transform of the Bochner-Riesz multiplier \((1 - |\xi|^2)^\frac{\delta}{2} \), \(\xi \in \mathbb{R}^d\) is given by

\[\pi^{-\delta} \Gamma(1 + \delta) |x|^{-\frac{d}{2} - \delta} J_{d/2 + \delta}(2\pi |x|), \]

where \(J_{d/2 + \delta}\) is the Bessel function of order \(d/2 + \delta\). So the inverse Fourier transform \(K^\delta(x, t)\) of \((1 - |\xi/\tau|^2)^\frac{\delta}{d} \hat{\psi}(\tau)\) is given by

\[K^\delta(x, t) = \int_{\mathbb{R}} e^{2\pi i r(x, \xi + t)(1 + \delta)\tau x |x|^{-\delta - d/2} J_{d/2 + \delta}(2\pi|\tau| |x|)} \tau^d \hat{\psi}(\tau) d\tau. \]
It is well-known that, for all nonnegative integers N and n, as $r \to \infty$,
\[J_m(r) = e^{ir} \left[r^{-1/2} \sum_{j=0}^{N} a_j r^{-j/2} + A_N(r) \right] + e^{-ir} \left[r^{-1/2} \sum_{j=0}^{N} b_j r^{-j/2} + B_N(r) \right], \]
\[\frac{d^n}{dr^n} A_N(r) = O\left(r^{-n-\frac{N+1}{2}}\right), \quad \frac{d^n}{dr^n} B_N(r) = O\left(r^{-n-\frac{N+1}{2}}\right). \]

For reference, see pages 334–338 in Stein’s book [13]. Therefore from the asymptotic expansion of the Bessel function $J_{d/2+\delta}$, for any positive integers N and M we have
\[K^\delta(x,t) = \sum_{j=0}^{N} a_j^\pm \left| x \right|^{-\left(\delta + \frac{d+1}{2} \right)} \mathcal{F}^{-1} \left[\hat{\psi}(\tau) \right] (t \pm |x|) + F^\delta_N(x,t), \]
as $|x| \to \infty$; here \mathcal{F}^{-1} denotes the inverse Fourier transform and
\[|F^\delta_N(x,t)| \leq C_{\delta,N,M} \left(|x|^{-\delta - \frac{d+1}{2}} \right) (1 + |t| - |x|)^{-M}. \]

Note that
\[F^{(d-1)/2} N \chi_{\{|x| \geq 1\}} \in L^1(\mathbb{R}^{d+1}) \quad \text{if} \quad N \geq 1 \quad \text{and} \quad M > 1. \]
Therefore it suffices to consider the terms
\[|x|^{-\delta - \frac{d+1}{2}} \mathcal{F}^{-1} \left[\hat{\psi}(\tau) \right] (t \pm |x|), \quad |x| \geq 1, \]
with $j = 0, 1$, and $\delta = (d - 1)/2$. From now on we will concentrate on the term
\[|x|^{-\delta - \frac{d+1}{2}} \mathcal{F}^{-1} \left[\hat{\psi}(\tau) \right] (t - |x|), \quad |x| \geq 1, \quad \delta = (d - 1)/2, \]
and the other cases can be treated similarly. Now, we should treat the operation of convolution with
\[|x|^{-d} \psi(t - |x|), \quad |x| > 1. \]

For technical reasons, to obtain the convolution estimates in Lemma [2.3], fix a finite C^∞ partition of unity $\{\omega_i\}$ on the unit sphere \mathbb{S}^{d-1}, with each ω_i having very small support. Let ω be one of the C^∞ partition of unity $\{\omega_i\}$. Next choose $\eta \in C_0(\mathbb{R}^d)$, real-valued, radial and supported in $\{1/2 \leq |x| \leq 2\}$, so that $\sum_{j \in \mathbb{Z}} \eta(2^{-j} x) = 1$ on $\mathbb{R}^d \setminus \{0\}$. Also choose $\phi \in C_0(\mathbb{R})$, real-valued and supported in $\{|t| \leq 2\}$, so that
\[\sum_{n \in \mathbb{Z}} \phi(t - n) = \sum_{n \in \mathbb{Z}} \phi_n(t) = 1. \]
Then it suffices to treat the operation of convolution with
\[\sum_{n \in \mathbb{Z}} \sum_{j \geq 0} |x|^{-d} \psi(t - |x|) \omega(x/|x|) \phi(t - |x| - n) \eta(2^{-j} x) := \sum_{n \in \mathbb{Z}} \sum_{j \geq 0} K^\eta_j(x,t). \]

Let f be as in (2.3). Then it suffices to show that
\[\left| \left\{ (x,t) : \left(\sum_{j \geq 0} K^\eta_j \right) * f(x,t) > \alpha \right\} \right| \leq C_N (1 + |n|)^{-N} \alpha^{-1} \|f\|_1, \]
for each $n \in \mathbb{Z}$ and $\alpha > 0$. The following Lemma 2.1 is the standard Calderón-Zygmund decomposition, and we omit the proof (see Lemma 4.1 in [2]).

Lemma 2.1. Suppose $\beta > 0$ is given. Then for any finite collection q of dyadic cubes q and associated positive scalars λ_q, there exists a collection of pairwise...
disjoint dyadic cubes \(\{ S : S \in \mathbf{S} \} \) such that
\[
\begin{align*}
(1) \quad & \sum_{q \in S} \lambda_q \leq 2^{d+1} |S|, \\
(2) \quad & \sum_{S \in \mathbf{S}} |S| \leq \beta^{-1} \sum_{q \in \mathbf{q}} \lambda_q, \\
(3) \quad & \left\| \sum_{q \not\in \text{not contained in any } S} \frac{\lambda_q}{|q|} \right\|_\infty \leq \beta.
\end{align*}
\]

Let \(\mathbf{C} \) be the collection of dyadic cubes \(q \in \mathbf{q} \) which are contained in some \(S \in \mathbf{S} \). For each \(q \in \mathbf{C} \) we define \(S(q) \) as the unique \(S \in \mathbf{S} \) containing \(q \). The following is a refined Calderón-Zygmund decomposition whose proof relies on a stopping time argument.

Lemma 2.2 (cf. Lemma 5.1 in \([2]\) or Lemma 5 in \([9]\)). Given \(\beta > 0 \) there exists a function \(\Gamma : \mathbf{C} \to \mathbb{Z} \) and a measurable set \(E \) such that
\[
\begin{align*}
(1) \quad & |E| \leq C \left(\beta^{-1} \sum_{q \in \mathbf{C}} \lambda_q + \sum_{S \in \mathbf{S}} |S| \right), \\
(2) \quad & \{ q + \text{supp}(K^n_j) \} \subset E \quad \text{for all } j < \Gamma(q) \text{ and } q \in \mathbf{C}, \\
(3) \quad & \ell(S(q)) < \Gamma(q) \quad \text{for each } q \in \mathbf{C}, \\
(4) \quad & \text{for each } \tau, \ell \in \mathbb{Z} \text{ with } \ell \leq \tau, \text{ and any } Q \in D_\ell \text{ we have}
\sum_{q \subset Q, q \in \mathbf{C}, \Gamma(q) \leq \tau} \lambda_q \leq \beta 2^{d(\tau+1)+\max(0,\ell)}.
\end{align*}
\]

For the proof we use the usual two-parameter stopping time arguments, and we construct an exceptional set \(E \) by combining stopping time arguments with the support condition of the kernel \(K^n_j \); i.e., if \(\ell(Q) \leq \tau \) and \(\tau \geq 0 \), then
\[
(2.4) \quad \left| \bigcup_{j=0}^\tau (Q + \text{supp}(K^n_j)) \right| \leq C 2^{d\tau+\max(0,\ell(Q))}.
\]

If \(S \in \mathbf{S} \) has side-length \(2^j \), then (1) of Lemma 2.1 says that
\[
\sum_{q \subset S} \lambda_q \leq 2^{d+1} |S|.
\]

But if \(Q \subset S \), then by (4) of Lemma 2.2 we have a more delicate estimate:
\[
\sum_{q \subset Q, q \in \mathbf{C}, \Gamma(q) \leq j} \lambda_q \leq 2^d 2^{jd+\max(0,\ell(Q))}.
\]

This is why we referred to Lemma 2.2 as a refined Calderón-Zygmund decomposition. The proof will be given in Section 4.

Lemma 2.3. Let \(\overline{K}^n_j \) denote the conjugate of \(K^n_j \). Then for each \(i < j \) and every \(N > 0 \) we have
\[
\begin{align*}
(1) \quad & |K^N_i * \overline{K}^n_j(x,t)| \leq C_N (1 + |n|)^{-2N} 2^{-d_j} (1 + |(x,t)|)^{-2} \chi(|(x,t)| \leq 2^{j+1})(x,t), \\
(2) \quad & |K^N_i * \overline{K}^n_j(x,t)| \leq C_N (1 + |n|)^{-2N} 2^{-d_j} 2^{\frac{1-d}{2}} \chi(|x| \leq 2^{j+1})(x) \chi(|t-x| \leq 2^{j+1})(x,t).
\end{align*}
\]
The proof of Lemma 2.3 will be given in Section 3. For the moment we assume Lemmas 2.2 and 2.3 and prove Theorem 1.1. Let f be as in (2.3). We need to show that
\begin{equation}
\left\{(x, t) : \left(\sum_{j \geq 0} K^n_j \ast f(x, t)\right) > \alpha\right\} \leq C \left(1 + |n|\right)^{-N} \alpha^{-1} \sum_{q} \lambda_q,
\end{equation}
for each $\alpha > 0$. Apply Lemma 2.1 to the collection of dyadic cubes q and associated λ_q appearing in the definition of f with $\beta = \left(1 + |n|\right)^{N} \alpha$. Let S be as in Lemma 2.1 and define
\[b = \sum_{S \in q \subset S} \lambda_q a_q, \quad g = f - b. \]
Then $\|g\|_{\infty} \leq \beta$ and so by (1) of Lemma 2.3 for $d \geq 4$ we have
\[\left\| \left(\sum_{j} K^n_j \right) \ast g \right\|_2 \leq \sum_{j} ||g||_2 \|K^n_j \ast K^n_j\|_1^{1/2} \]
\[\leq \sum_{j} (C \left(1 + |n|\right)^{-N} 2^{-j(d-3)/4}) \]
\[\leq C \left(1 + |n|\right)^{-N} \beta^{1/2} ||f||_1^{1/2} \]
\[\leq C \left(1 + |n|\right)^{-N} \alpha^{1/2} ||f||_1^{1/2}. \]
Therefore by Tchebychev’s inequality we have
\begin{equation}
\left\{(x, t) : \left(\sum_{j} K^n_j \ast g(x, t)\right) > \alpha\right\} \leq \alpha^{-2} \left\| \left(\sum_{j} K^n_j \right) \ast g \right\|_2^2 \leq C \left(1 + |n|\right)^{-N} \alpha^{-1} ||f||_1.
\end{equation}
Let S be as above and C be the collection of q’s appearing in the definition of b. Then apply Lemma 2.2 with S, C. By (1) of Lemma 2.2 we have an exceptional set E such that
\begin{equation}
|E| \leq C \left(\sum_{q \in C} \lambda_q + \sum_{S \in S} |S|\right) \leq C \beta^{-1} ||f||_1 \leq C \left(1 + |n|\right)^{-N} \alpha^{-1} ||f||_1.
\end{equation}
By (2.6) and (2.7), (2.3) will follow from
\begin{equation}
\left\{(x, t) \in \mathbb{R}^{d+1} \setminus E : \left(\sum_{j} K^n_j \ast b(x, t)\right) > \alpha\right\} \leq C \left(1 + |n|\right)^{-N} \alpha^{-1} \sum_{q} \lambda_q.
\end{equation}
By Tchebychev’s inequality, (2.8) will follow from
\begin{equation}
\left\| \left(\sum_{j} K^n_j \right) \ast b \right\|_{L^2(\mathbb{R}^{d+1} \setminus E)} \leq C \left(1 + |n|\right)^{-N} \alpha \sum_{q} \lambda_q.
\end{equation}
By (2) of Lemma 2.2 for each $q \in C$, $K^n_j \ast a_q$ is supported in E unless $j \geq \Gamma(q)$. Thus we have
\begin{equation}
\left\| \sum_{j} b \ast K^n_j \right\|_{L^2(\mathbb{R}^{d+1} \setminus E)} \leq \left\| \sum_{j \leq \Gamma(q)} \left(\sum_{\Gamma(q) \leq j} \lambda_q a_q \right) \ast K^n_j \right\|_2 \leq \left\| \sum_{j \leq \Gamma(q)} \lambda_q a_q \ast K^n_j \right\|_2 + \left\| \sum_{0 < \Gamma(q) \leq j} \lambda_q a_q \ast K^n_j \right\|_2.
\end{equation}
By (2.12) it is easy to see that

$$(2.13) \quad \sum_s \sum_{s<j} |\langle B_0, K^n_j \rangle| \leq \sum_s \sum_{s=j}^\infty |\langle B_0, K^n_j \rangle|.$$

Note that

$$\sum_s \sum_{s<j} = \sum_s \sum_{s=j}^\infty,$$

hence we have

$$(2.11) \quad \left\| \sum_s \sum_{s<j} \left(\sum_{\Gamma(q)=j-s} \lambda_q a_q \right) K^n_j \right\|_2 \leq \sum_s \sum_{s=j}^\infty \left\| \sum_{\Gamma(q)=j-s} \lambda_q a_q \right\|_2 \left\| K^n_j \right\|_2.$$

Now by (2.10) and (2.11) we have

$$\left\| \sum_j b_j K^n_j \right\|_{L^2(\mathbb{R}^{d+1}\setminus E)} \leq F_1 + F_2,$$

where

$$F_1 = \sum_j \left\| \left(\sum_{\Gamma(q)=j} \lambda_q a_q \right) K^n_j \right\|_2, \quad F_2 = \sum_j \sum_{s=j} \left(\sum_{\Gamma(q)=j-s} \lambda_q a_q \right) \left\| K^n_j \right\|_2.$$

Estimation of part F_1. Let $B_0 = \sum_{\Gamma(q)=0} \lambda_q a_q$. For each $q \in \mathcal{C}$ there exists a unique $S(q) \in \mathcal{S}$ containing q; hence if $\Gamma(q) \leq 0$, then by the condition $\ell(S(q)) \leq \Gamma(q)$ we have $\ell(S(q)) \leq 0$. Therefore by (1) of Lemma 2.1, we can see that

$$\|B_0\chi_q\|_1 = \sum_{q \leq Q, \Gamma(q)=0} \lambda_q \leq C \beta \quad \text{for each } Q \in \mathcal{D}_0.$$

By (1) of Lemma 2.3 we have

$$\|K^n_j * \tilde{K}_n^j * B_0\|_\infty \leq C_N (1 + |n|)^{-2N} 2^{-jd} \sup_{x \in \mathbb{R}^{d+1}} \left(\int_{|x-y| \leq 2^j} \frac{B_0(y)}{(1 + |x-y|)^{2^j}} \, dy \right).$$

By (2.12) it is easy to see that

$$\left(\int_{|x-y| \leq 2^j} \frac{B_0(y)}{(1 + |x-y|)^{2^j}} \, dy \right) \leq \left(\int_{|x-y| \leq 2^j} \frac{C \beta}{(1 + |x-y|)^{2^j}} \, dy \right) \leq C \beta 2^{\frac{jd}{2^j}}.$$

Therefore we have

$$\|K^n_j * \tilde{K}_n^j * B_0\|_\infty \leq C_N (1 + |n|)^{-2N} \beta 2^{\frac{jd}{2^j}},$$

and so for $d \geq 4$,

$$(2.13) \quad F_1 = \sum_j \|B_0 * K^n_j\|_2 \leq \sum_j \|\langle B_0, K^n_j \rangle\|^{1/2} \leq \|B_0\|^{1/2} \sum_j \|K^n_j * \tilde{K}_n^j + B_0\|^{1/2} \leq C_N (1 + |n|)^{-N} \beta^{1/2} \|f\|^{1/2}.$$
Estimation of part F_2. For each $l > 0$, let $B_l = \sum_{\Gamma(q) = l} \lambda_q a_q$. Then
\[
\left\| \sum_{j > s} B_{j-s} * K^n_j \right\|_2^2 \leq \sum_{j > s} \left\| B_{j-s} * K^n_j \right\|_2^2 + 2 \sum_{j > s} \left| \langle B_{j-s} * K^n_j, B_{j-1-s} * K^n_{j-1} \rangle \right|
\]
\[
+ 2 \sum_{j > s} \sum_{s < t < j-1} \left| \langle B_{t-s} * K^n_t, B_{j-s} \rangle \right|
\]
\[= A_1(s) + A_2(s) + A_3(s).\]

For the part $A_1(s)$, we write
\[
\left\| B_{j-s} * K^n_j \right\|_2^2 = \sum_{\Gamma(q), \Gamma(q') = j-s} \lambda_q \lambda_{q'} \langle a_{q'} * K^n_j, a_q * K^n_j \rangle
\]
\[
\leq \sum_{m=0}^{j+4} \sum_{1 + \text{dist}(q, q') \sim 2^m} \lambda_q \lambda_{q'} \langle a_{q'} * K^n_j, a_q \rangle
\]
\[
\leq \sum_{m=0}^{j-s+2} \sum_{q: 1 + \text{dist}(q, q') \sim 2^m} + \sum_{m=j-s+3}^{j+4} \sum_{q: 1 + \text{dist}(q, q') \sim 2^m} 2^{d-4} m \lambda_q.
\]

Estimation of part I. For each fixed m and q' consider the contribution of all λ_q over all q so that $1 + \text{dist}(q, q') \sim 2^m$. All such q are contained in the union of a fixed number of D_m. Hence when $0 \leq m \leq j-s+2$, by (1) of Lemma 2.3 we have
\[
I \leq C_N (1 + |n|)^{-2} 2^{-j \beta} \sum_{q: 1 + \text{dist}(q, q') \sim 2^m} \lambda_q \leq C_N (1 + |n|)^{-2} 2^{-j \beta} \sum_{\Gamma(q) = j-s} \lambda_q
\]
By (1) of Lemma 2.2 we have
\[
\sum_{q: 1 + \text{dist}(q, q') \sim 2^m, \Gamma(q') = j-s} \lambda_q \leq C \beta 2^{(j-s) \beta + m},
\]
and so for $d \geq 4$,
\[
I \leq C_N (1 + |n|)^{-2} 2^{-j \beta} \sum_{\Gamma(q') = j-s} \lambda_{q'}.
\]

Estimation of part II. Next, consider all q with $\text{dist}(q, q') \sim 2^m$ and $j-s+3 \leq m \leq j+4$. Recall that each $q \in C$ is contained in some $S(q) \subset S$. Since $\ell(S(q)) < \Gamma(q) = j-s$, we have $\text{dist}(S(q), q') \sim 2^m$ and so
\[
II \leq C_N (1 + |n|)^{-2} 2^{-j \beta} \sum_{q'} \lambda_{q'} \sum_{m=j-s+3}^{j+4} \sum_{q: \text{dist}(q, q') \sim 2^m} 2^{j-d} m \lambda_q
\]
\[
\leq C_N (1 + |n|)^{-2} 2^{-j \beta} \sum_{q'} \lambda_{q'} \sum_{m=j-s+2}^{j+5} \sum_{q \in C} \text{dist}(S(q), q')^{j-d} \lambda_q.
\]
By (1) of Lemma 2.1 for each $S \in \mathbf{S}$ we have $\sum_{q \subset S} \lambda_q \leq C|\beta||S|$, and so

$\sum_{S \in \mathbf{S}} \sum_{q \subset S} \text{dist}(S, q')^{\frac{1+\beta}{d}} \lambda_q \leq C \sum_{S \in \mathbf{S}} \sum_{q \subset S} \text{dist}(S, q')^{\frac{1+\beta}{d}} (\beta|S|) \leq C\beta \int_{y \in \mathbb{R}^{d+1}, |y| \leq 2^{j+5}} |y|^{\frac{1+\beta}{d}} dy \leq C2^{\frac{2+\beta}{d}j}\beta.$

Now we have

$$\Pi \leq C_N(1 + |n|)^{-2N} 2^{\frac{3+\beta}{d}j} \beta \sum_{\Gamma(q') = j-s} \lambda_{q'},$$

and so for $d \geq 4$,

$$A_1(s) \leq \sum_{j > s} C_N(1 + |n|)^{-2N} \left(2^{-sd} + 2^{\frac{3+\beta}{d}j}\right) \beta \sum_{\Gamma(q') = j-s} \lambda_{q'} \tag{2.14}$$

$$\leq C_N(1 + |n|)^{-2N} 2^{\frac{3+\beta}{d}s} \beta \sum_{q'} \lambda_{q'}.$$

Similarly we have

$$A_2(s) \leq C_N(1 + |n|)^{-2N} 2^{\frac{3+\beta}{d}s} \beta \sum_{q'} \lambda_{q'}.$$

For the part $A_3(s)$, if $\Gamma(q) = i - s$, then $\ell(q), S(q) \leq i - s$. So by (1) of Lemma 2.1 and (2) of Lemma 2.3 together with the condition

$$\text{supp}(K^n_i + \tilde{K}^n_j) \subset \{(x, t) : |x| \leq 2^{j+4}, |t - |x|| \leq 2^{j+4}\},$$

we have

$$\|B_{i-s} * K^n_i * \tilde{K}^n_j\|_{\infty} \leq C_N(1 + |n|)^{-2N} 2^{-jd} 2^{\frac{1-\beta}{d}} \sum_{S \in \mathbf{S}} \sum_{\Gamma(q) = i - s} \beta_{q} \lambda_{q} \leq C_N(1 + |n|)^{-2N} 2^{-jd} 2^{\frac{1-\beta}{d}} \sum_{S \in \mathbf{S}} \beta_{|S|},$$

where the sums are taken over all $S \in \mathbf{S}$ such that

$$S \subset \{(x, t) : |x| \leq 2^{j+4}, |t - |x|| \leq 2^{j+4}\}.$$

So we have $\sum_{S \in \mathbf{S}} |S| \leq C2^{d+1}$ and

$$\|B_{i-s} * K^n_i * \tilde{K}^n_j\|_{\infty} \leq C_N(1 + |n|)^{-2N} 2^{\frac{2+\beta}{d}i}\beta.$$

Therefore for $d \geq 4$,

$$A_3(s) = \sum_{j > s} \sum_{0 < i < j - 1} \|B_{i-s} * K^n_i * \tilde{K}^n_j, B_{j-s}\|_1 \leq C_N(1 + |n|)^{-2N} 2^{\frac{2+\beta}{d}s} \beta \sum_{q} \lambda_{q},$$

$$\tag{2.16} \leq C_N(1 + |n|)^{-2\beta} 2^{\frac{2+\beta}{d}s} \beta \sum_{q} \lambda_{q}.$$
Finally from (2.13), (2.14), (2.15) and (2.16), for $d \geq 4$ we have
\[F_2 \leq \sum_{s \geq 0} (A_1(s) + A_2(s) + A_3(s))^{1/2} \leq C_N (1 + |n|)^{-N} \beta^{1/2} (\sum_q \lambda_q)^{1/2}, \]

and we are done.

3. Proof of Lemma 2.3

The proof is similar to Lemma 3.1 in [2]. For (11), let $\eta_1(x) := \eta(x)|x|^{-d}$. Then we have
\[K^n \ast K^n_j(x, t) = 2^{-2d} \int_{\mathbb{R}} \int_0^\infty F_j(x, t, s, r) \psi(s-r) \eta_1(2^{-j}r) \phi_n(s-r) r^{d-1} dr ds, \]

where
\[F_j(x, t, s, r) = \int_{\mathbb{R}^{d-1}} \psi(t+s-|x+r\theta|) \omega((x+r\theta)/|x+r\theta|) \omega(\theta) \times \phi_n(t+s-|x+r\theta|) \eta_1(2^{-j}(x+r\theta)) d\theta. \]

Note that
\[\psi(t+s-|x+r\theta|) = \int_{\mathbb{R}} e^{2\pi i r(t+s-|x+r\theta|)} \tilde{\psi}(\tau) d\tau. \]

Hence we have
\[F_j(x, t, s, r) = \int_{\mathbb{R}} e^{2\pi i r(t+s)} \tilde{\psi}(\tau) G_j(x, t, s, r, \tau) d\tau, \]

where
\[G_j(x, t, s, r, \tau) = \int_{\mathbb{R}^{d-1}} e^{-2\pi i r|x+r\theta|} \omega((x+r\theta)/|x+r\theta|) \omega(\theta) \times \phi_n(t+s-|x+r\theta|) \eta_1(2^{-j}(x+r\theta)) d\theta. \]

It suffices to show that
\[|G_j(x, t, s, r, \tau)| \leq C (1 + |(x, t)|)^{(1-d)/2}, \]

uniformly for $\tau \sim 1$, s and $r \sim 2^j$. Suppose that the function ω from the partition of unity has sufficiently small support about $(0, \ldots, 0, 1)$. Then we use the local coordinate chart
\[\theta = (\theta_1, \ldots, \theta_d) = (\theta_1, \ldots, \theta_{d-1}, \sqrt{1 - \theta_1^2 - \cdots - \theta_{d-1}^2}). \]

Then by direct calculation, for $1 \leq l \leq d - 1$,
\[\frac{\partial}{\partial \theta_l} (|x + r\theta|) = r \left(\frac{\theta_d x_l - \theta_l x_d}{|x + r\theta|^2} \right), \]
\[\frac{\partial^2 |x + r\theta|}{\partial \theta_l^2} = r \left(\frac{|x + r\theta|^2 (\theta_l^2 - \theta_d^2) (-x_d) - r \theta_d (\theta_d x_l - \theta_l x_d)^2}{|x + r\theta|^3 \theta_d^3} \right), \]

and for $1 \leq l \neq m \leq d - 1$,
\[\frac{\partial^2 |x + r\theta|}{\partial \theta_l \partial \theta_m} = -r \left(\frac{\theta_l \theta_m x_d |x + r\theta|^2 + r \theta_d (\theta_d x_m - \theta_m x_d) (\theta_d x_l - \theta_l x_d)}{|x + r\theta|^3 \theta_d^3} \right). \]

Note that
\[\frac{\partial^2 |x + r\theta|}{\partial \theta_l^2}(0, \ldots, 0, 1) = r \left(\frac{|x + r\theta|^2 (-x_d) - x_l^2}{|x + r\theta|^3} \right). \]
Therefore if \(r \theta \) is bounded below by \(r \theta \) for some \(1 \leq l \leq d - 1 \), by (3.3),

\[
\left| \frac{\partial (r \theta)}{\partial l} \right| \geq |x|
\]

uniformly for \(|x + r \theta| \sim 2^i \), \(r \sim 2^i \). By integrating by parts via

\[
\frac{\partial}{\partial t_i} \left(e^{-2\pi i r |x + r \theta|} \right) = -2\pi i r \frac{\partial |x + r \theta|}{\partial t_i} \left(e^{-2\pi i r |x + r \theta|} \right),
\]

we have

\[
|G_j(x, t, s, r, \tau)| \leq C_N (1 + |x_i|)^{-N} \leq C_N (1 + |x|)^{-N}.
\]

In the case \(|x_d| \gtrsim |x| \), from (3.4), (3.5), (3.6), (3.7), together with the conditions \(|x + r \theta| \sim 2^i \), \(r \sim 2^i \), we can see that each absolute value of the eigenvalue of the Hessian matrix

\[
\frac{\partial^2 |x + r \theta|}{\partial s \partial \theta}
\]

is bounded below by \(C|x_d| \) uniformly for \(2^{i-1} < r < 2^{i+1} \) when \(\theta \) and \((x + r \theta)/|x + r \theta| \) are both in the support of \(\omega \). By the methods of stationary phase, we have

\[
|G_j(x, t, s, r, \tau)| \leq C (1 + |x_d|)^{(1-d)/2} \leq (1 + |x|)^{(1-d)/2}.
\]

Hence we have

\[
(3.8) \quad |K^n_j(x, t)| \leq C_N (1 + |n|)^{-2N} 2^{-jd} (1 + |x|)^{(1-d)/2}.
\]

Next recall that

\[
K_j^n(x, t) = 2^{-2d_j} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \psi(t + s - |x + y|) \overline{\psi}(s - |y|) \varphi[(x + y)/|x + y|] \times \omega(y/|y|) \phi_n(t + s - |x + y|) \phi_n(s - |y|) \eta_1(2^{-j}(x + y)) \eta_1(2^{-j} y)dy ds.
\]

Hence \(K_j^n(x, t) \) is supported in

\[
|t + s - |x + y| - n| \leq 2, \quad |s - |y| - n| \leq 2,
\]

and by the triangle inequality, this implies that

\[
|t| \leq |t + s - |x + y| - n| + |s - |y| + n| + |- |y| + |x - y|| \leq 2 + 2 + |x|.
\]

Therefore if \(|x| \leq 2 \), then \(|(x, t)| \leq 6 \), and (3.8) implies that

\[
|K_j^n(x, t)| \leq C_N (1 + |n|)^{-2N} 2^{-jd} (1 + |(x, t)|)^{-N}.
\]

If \(|x| \geq 2 \), then by (3.9) we have \(|t| \leq 3|x| \), and (3.8) implies that

\[
|K_j^n(x, t)| \leq C_N (1 + |n|)^{-2N} 2^{-jd} (1 + |(x, t)|)^{(1-d)/2}.
\]

For (2), let \(F_j(x, t, s, r) \) and \(G_j(x, t, s, r, \tau) \) be the same as in (3.1) and (3.2). Then we have

\[
K_j^n(x, t) = 2^{-d_j-d_i} \int_{\mathbb{R}^d} \int_0^\infty F_j(x, t, s, r) \overline{\psi}(s - r) \eta_1(2^{-i} r) \phi_n(s - r) r^{d-1} dr ds.
\]
Since $|x + r\theta| \sim 2^j$, $r \sim 2^j$, we have $|x| \sim 2^j$. Hence in the case $|x| \gtrsim |x|$ for some $1 \leq l \leq d - 1$, from (3.3) we can see that
\[
\left| \frac{\partial |x + r\theta|}{\partial \theta_l} \right| \gtrsim 2^j,
\]
uniformly for $|x + r\theta| \sim 2^j$ and $r \sim 2^j$, and by integrating by parts via
\[
\frac{\partial}{\partial \theta_l} \left(e^{-2\pi i \tau |x + r\theta|} \right) = -2\pi i \frac{\partial |x + r\theta|}{\partial \theta_l} \left(e^{-2\pi i \tau |x + r\theta|} \right),
\]
we have
\[
|G_j(x, t, s, r, \tau)| \leq C N 2^{-Nj}.
\]
In the case $|x_d| \gtrsim |x|$, each absolute value of the eigenvalue of the Hessian matrix
\[
\frac{\partial^2 |x + r\theta|}{\partial^2 \theta}
\]
is bounded below by $C 2^j$ uniformly for $r \sim 2^j$ when θ and $(x + r\theta)/|x + r\theta|$ are both in support of ω. By the methods of stationary phase, we have
\[
|G_j(x, t, s, r, \tau)| \leq C 2^{\frac{j-2}{2}}.
\]
Hence in the case $|x_d| \gtrsim |x|$ we have
\[
(3.10) \quad |K_j^n \ast \widetilde{K}_k^n(x, t)| \leq C N (1 + |n|)^{-2N} 2^{-j} d^{\frac{j-2}{2}}.
\]
Note that $K_j^n \ast \widetilde{K}_k^n(x, t)$ is supported in
\[
|t + s - |x + y| - n| \leq 2, |s - |y| - n| \leq 2, \quad |x + y| \leq 2^{i+1}, |y| \leq 2^{i+1}.
\]
Hence $K_j^n \ast \widetilde{K}_k^n(x, t)$ is supported in
\[
|t - x| \leq |t + s - |x + y| - n| + ||x + y| - |x|| + | - s + n| \leq 2 + |y| + (2 + |y|) \leq 2^{i+4},
\]
and from (3.10) and (3.11) we have (2) of Lemma 2.3.

4. Proof of Lemma 2.2

The following are the usual two-parameter stopping-time arguments. These will be discussed in more detail below. We will combine these arguments with the support condition of the kernel K_j^n to construct an exceptional set E. Let $m = \min \{\ell(q) : q \in \mathbb{C} \}$. Select an integer τ_0 such that
\[
\tau_0 > \max \{\ell(q) : q \in \mathbb{C} \}, \quad \sum_{q \in \mathbb{C}} \lambda_q < \beta 2^{4\tau_0 + \max(0, m)}.
\]
For each fixed $\tau \in \mathbb{Z}$ with $\tau \leq \tau_0$, we will define a sequence of functions $\Lambda_{\tau, \ell} : \mathbb{D}_k \to \mathbb{R}$ by a descending induction on $\ell \in \mathbb{Z}$ with $\ell \leq \tau$, and proceed with the same construction by a descending induction on τ. At each step, we will define subsets C_1, C_2 of \mathbb{C} which will increase as we proceed. Let $C_1, C_2 \subset \mathbb{C}$ and $\tau \in \mathbb{Z}$ be fixed for the moment, and define $\textbf{Inner loop}$ as

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Inner loop. Define $\Lambda_{\tau,\ell} : D_\ell \to \mathbb{R}$ with $\ell \leq \tau$. For each $Q \in D_\ell$, define
\[
\Lambda_{\tau,\ell}(Q) = \sum_{q \in Q: \gamma \in C_1 \cup C_2} \lambda_q.
\]

Begin with $\ell = \tau$. If
\[
(4.1) \quad \Lambda_{\tau,\ell}(Q) > \beta 2^{d\tau + \max(0,\ell)},
\]
then we say that “Q is selected at step (τ, ℓ)”. Put into C_1 every q such that $q \subseteq Q$ and define $\Gamma(q) = 1 + \tau$. Repeat until $\ell < \min\{\ell(q) : q \in C\}$. Actually this part of the process will be terminated once ℓ is smaller than m. Put into C_2 every $q \in C \setminus C_1$ such that $\ell(q) \geq \tau$ and for such q define $\Gamma(q) = 1 + \ell(S(q))$. Actually every $q \in C \setminus C_1 \cup C_2$ satisfies $\ell(q) \leq \tau - 1$.

Perform Inner loop with $C_1 = \emptyset = C_2$ and $\tau = \tau_0$. Next replace τ by $\tau - 1$ and repeat Inner loop. Repeat until $\tau = m - 1$. After this process we obtain $C = C_1 \cup C_2$. Clearly all selected Q are disjoint and Γ is well defined. Note that there is the usual stopping-time condition
\[
(4.2) \quad \Lambda_{\tau,\ell}(Q) \leq \beta 2^{d(\tau + 1) + \max(0,\ell)},
\]
which holds for all $Q \in D_\ell$ when $\ell \leq \tau \leq \tau_0$. This is because if $\tau = \tau_0$, then the condition is clear from the choice of τ_0 and m. When $\ell \leq \tau \leq \tau_0$, suppose this fails. Then $\Lambda_{\tau+1,\ell}(Q) \geq \Lambda_{\tau,\ell}(Q) > \beta 2^{d(\tau + 1) + \max(0,\ell)}$. This means that Q is selected at step $(\tau + 1, \ell)$; hence $\Lambda_{\tau,\ell}(Q) = 0$, and we have the contradiction.

Next we show (4), which says, for each $Q \in D_\ell$ with $\ell \leq \tau$,
\[
\sum_{q \in Q: \Gamma(q) \leq \tau} \lambda_q \leq \beta 2^{d(\tau + 1) + \max(0,\ell)}.
\]

When $\tau \geq \tau_0$, this property is clear from the initial choice of τ_0. When $\tau < \tau_0$, if we show that
\[
(4.3) \quad \Lambda_{\tau,\ell}(Q) = \sum_{q \in Q: q \notin C_1 \cup C_2} \lambda_q \geq \sum_{q \in Q: \Gamma(q) \leq \tau} \lambda_q
\]
for each $Q \in D_\ell$ with $\ell \leq \tau < \tau_0$, then by combining (4.2) and (4.3), we have (4).

Now (4.3) follows from the definition
\[
\Lambda_{\tau,\ell}(Q) = \sum_{q \in Q: q \notin C_1 \cup C_2} \lambda_q
\]
and the fact that
\[
\Gamma(q) \leq \tau \Rightarrow q \notin C_1 \cup C_2 \text{ at the beginning of step } (\tau, \ell).
\]
This is because, if $q \in C_1$, then $\Gamma(q) \geq 1 + \tau > \tau$, and if $q \in C_2$, then $\Gamma(q) = 1 + \ell(S(q)) \geq 1 + (1 + \tau) > \tau$. Hence $\Gamma(q) \leq \tau$ implies $q \notin C_1 \cup C_2$, and so we have (4.3).

Next, we construct an exceptional set E by using the above stopping-time arguments. If Q is selected at step (τ, ℓ), then we define $\tau(Q) = \tau$. If $\tau(Q) \geq 0$, then we define the tendril $T(Q)$ associated to Q by
\[
T(Q) = \bigcup_{j < \tau(Q) + 1} \left(Q + \text{supp}(K_j^n) \right).
\]
Also we define
\[E = E_1 \cup E_2, \quad E_1 = \bigcup_{S \in S} 2S, \quad E_2 = \bigcup_{Q: \text{selected}, \tau(Q) \geq 0} T(Q). \]
Thus we have
\[|E_1| \leq C \sum_{S \in S} |S|. \]
By the measure condition (2.4) of \(T(Q) \) and the condition (4.1) of selected \(Q \),
\[|E_2| \leq \sum_{Q: \text{selected}, \tau(Q) \geq 0} |T(Q)| \leq C \sum_{Q: \text{selected}} 2^{d\tau(Q) + \max(0, \ell(Q))} \leq C_1 \beta \sum_{Q: \text{selected}} \Lambda_{r, \ell}(Q) \leq C_1 \beta \sum \lambda_q. \]
So we have \(\mathbf{1} \). For \(\mathbf{2} \), if \(q \in C_1 \), then \(q \) belongs to some selected \(Q \) and \(\Gamma(q) = \tau(Q) + 1 \). Hence if \(\Gamma(q) > j \), then
\[\bigcup_{j < \Gamma(q)} \left(q + \text{supp}(K^n_j) \right) \subset T(Q) \subset E_2, \]
and if \(q \in C_2 \), then \(q \) belongs to some \(S(q) \in S \) and \(\Gamma(q) = 1 + \ell(S(q)) \). Hence if \(\Gamma(q) > j \), then
\[\bigcup_{j < \Gamma(q)} \{ q + \text{supp}(K^n_j) \} \subset 2S(q) \subset E_1. \]
For \(\mathbf{3} \), let \(\Gamma' := \Gamma \) and redefine
\[\Gamma(q) = \max \{ \Gamma'(q), 1 + \ell(S(q)) \}. \]
Then \(\mathbf{1} \) and \(\mathbf{3} \) are satisfied. We must check \(\mathbf{2} \) and \(\mathbf{4} \). For \(\mathbf{2} \), if \(\Gamma(q) = \Gamma'(q) \), then there is no problem. If \(\Gamma(q) = 1 + \ell(S(q)) > j \), then the argument is the same as above. \(\mathbf{4} \) follows from
\[\sum_{q \in Q: \Gamma(q) \leq \tau} \lambda_q \leq \sum_{q \in Q: \Gamma'(q) \leq \tau} \lambda_q, \]
and we have Lemma 2.2.

References

2. M. Christ, Weak type \((1,1)\) bounds for rough operators, Ann. of Math. (2) \textbf{128} (1988), no. 1, 19–42. MR0951506 (89m:42013)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WISCONSIN 53706

E-mail address: heo@math.wisc.edu

Current address: Pohang Mathematics Institute, Pohang University of Science & Technology, Pohang 790-784, Korea

E-mail address: heo@postech.ac.kr

DEPARTMENT OF MATHEMATICS, CHOSUN UNIVERSITY, GWANGJU 501-759, REPUBLIC OF KOREA

E-mail address: skhong@mail.chosun.ac.kr

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, REPUBLIC OF KOREA

E-mail address: cw.yang@korea.ac.kr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use