Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Discrete Painlevé equations for recurrence coefficients of semiclassical Laguerre polynomials


Authors: Lies Boelen and Walter Van Assche
Journal: Proc. Amer. Math. Soc. 138 (2010), 1317-1331
MSC (2010): Primary 39A13, 33C45; Secondary 42C05
DOI: https://doi.org/10.1090/S0002-9939-09-10152-1
Published electronically: December 8, 2009
MathSciNet review: 2578525
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider two semiclassical extensions of the Laguerre weight and their associated sets of orthogonal polynomials. These polynomials satisfy a three-term recurrence relation. We show that the coefficients appearing in this relation satisfy discrete Painlevé equations.


References [Enhancements On Off] (What's this?)

  • 1. M. P. Bellon, C.-M. Viallet, Algebraic entropy, Commun. Math. Phys. 204 (1999), 425-437. MR 1704282 (2000f:37040)
  • 2. Y. Chen, M. Ismail, Ladder operators for $ q$-orthogonal polynomials, J. Math. Anal. Appl. 345 (2008), 1-10. MR 2422628 (2009d:33021)
  • 3. T.S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, 13, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • 4. A.S. Fokas, A.R. Its, A.V. Kitaev, Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313-344. MR 1137067 (93a:58080)
  • 5. G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sect. A 76(1) (1976), 1-6. MR 0419895 (54:7913)
  • 6. B. Grammaticos, J. Hietarinta, A. Ramani, Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829-1832. MR 1125951 (92j:39011)
  • 7. B. Grammaticos, A. Ramani, Discrete Painlevé equations: Coalescences, limits and degeneracies, Physica A 228 (1996), 160-171. MR 1399286 (97e:58131)
  • 8. B. Grammaticos, A. Ramani, Discrete Painlevé equations: A review, Lect. Notes Phys., 644, Springer, 2004, pp. 245-321. MR 2087743 (2005g:39032)
  • 9. B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991), 1825-1828. MR 1125950 (92f:58081)
  • 10. M. E. H. Ismail, Z. Mansour, $ q$-Analogues of Freud weights and nonlinear difference equations, manuscript.
  • 11. A.P. Magnus, Freud's equations for orthogonal polynomials as discrete Painlevé equations, in Symmetries and Integrability of Difference Equations (Canterbury, 1996), London Math. Soc. Lecture Note Ser., 255, Cambridge University Press, 1999, pp. 228-243. MR 1705232 (2000k:42036)
  • 12. F. Nijhoff, On a q-deformation of the discrete Painlevé I equation and q-orthogonal polynomials, Lett. Math. Phys. 30 (1994), 327-336. MR 1271093 (95e:33024)
  • 13. A. Ramani, B. Grammaticos, T. Tamizhmani, Quadratic relations in continuous and discrete Painlevé equations, J. Phys. A. 33 (2000), 3033-3044. MR 1766506 (2001d:34018)
  • 14. W. Van Assche, Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials, in ``Difference Equations, Special Functions and Orthogonal Polynomials'' (S. Elaydi et al., eds.), World Scientific, 2007, pp. 687-725. MR 2451211 (2009k:42055)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 39A13, 33C45, 42C05

Retrieve articles in all journals with MSC (2010): 39A13, 33C45, 42C05


Additional Information

Lies Boelen
Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, BE-3001 Leuven, Belgium
Email: lies.boelen@wis.kuleuven.be

Walter Van Assche
Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, BE-3001 Leuven, Belgium
Email: walter@wis.kuleuven.be

DOI: https://doi.org/10.1090/S0002-9939-09-10152-1
Keywords: Discrete Painlev\'e equations, orthogonal polynomials
Received by editor(s): February 23, 2009
Received by editor(s) in revised form: July 2, 2009
Published electronically: December 8, 2009
Additional Notes: This research was supported by K. U. Leuven Research Grant OT/08/033, FWO Research Grant G.0427.09 and the Belgian Interuniversity Attraction Poles Programme P6/02.
Communicated by: Peter A. Clarkson
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society