Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extreme and exposed points of spaces of integral polynomials


Authors: Christopher Boyd and Silvia Lassalle
Journal: Proc. Amer. Math. Soc. 138 (2010), 1415-1420
MSC (2010): Primary 46G25; Secondary 46B04
DOI: https://doi.org/10.1090/S0002-9939-09-10158-2
Published electronically: November 3, 2009
MathSciNet review: 2578533
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ E$ is a real Banach space such that $ E'$ has the approximation property and such that $ \ell_1\not\hookrightarrow {\widehat \bigotimes_{n,s,\epsilon}} E$, then the set of extreme points of the unit ball of $ \mathcal{P}_I(^nE)$ is equal to $ \{\pm\phi^n\colon \phi\in E',\Vert\phi\Vert=1\}$. Under the additional assumption that $ E'$ has a countable norming set, we see that the set of exposed points of the unit ball of $ \mathcal{P}_I(^nE)$ is also equal to $ \{\pm\phi^n\colon \phi\in E',\Vert\phi\Vert=1\}$.


References [Enhancements On Off] (What's this?)

  • 1. Acosta, M. and Becerra Guerrero, J., Slices in the unit ball of the symmetric tensor product of $ \mathscr{C}(K)$ and $ L_1(\mu)$, Ark. Mat., 47 (1) (2009), 1-12. MR 2480913
  • 2. Acosta, M. and Becerra Guerrero, J., Slices in the unit ball of the symmetric tensor product of a Banach space, J. Convex Anal., to appear.
  • 3. Boyd, C. and Ryan, R.A., Geometric theory of integral polynomials and symmetric tensor products, J. Functional Analysis, 179 (2001), 18-42. MR 1807251 (2002b:46029)
  • 4. Carando, D. and Dimant, V., Duality in spaces of nuclear and integral polynomials, J. Math. Anal. Appl., 241 (2000), 107-121. MR 1738337 (2001c:46089)
  • 5. Carando, D. and Zalduendo, I., A Hahn-Banach theorem for integral polynomials, Proc. Amer. Math. Soc., 127 (1999), 241-250. MR 1458865 (99b:46067)
  • 6. Dineen, S., Holomorphy types on a Banach space, Studia Math., 39 (1971), 241-288. MR 0304705 (46:3837)
  • 7. Dineen, S., Complex analysis on infinite-dimensional spaces, Monographs in Mathematics, Springer-Verlag, London, 1999. MR 1705327 (2001a:46043)
  • 8. Dineen, S., Extreme integral polynomials on a complex Banach space, Math. Scand., 92 (2003), 129-140. MR 1951449 (2003j:46064)
  • 9. Jarchow, H., Locally convex spaces, B.G. Teubner, Stuttgart, 1981. MR 632257 (83h:46008)
  • 10. Kirwan, P. and Ryan, R.A., Extendibility of homogeneous polynomials on Banach spaces, Proc. Amer. Math. Soc., 126 (1998), 1023-1029. MR 1415346 (98f:46042)
  • 11. Ruess, W.M. and Stegall, C.P., Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535-546. MR 682665 (84e:46007)
  • 12. Ruess, W.M. and Stegall, C.P., Exposed and denting points in duals of operator spaces, Israel J. Math., 53 (1986), 163-190. MR 845870 (87j:46015)
  • 13. Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698-711. MR 1621703 (99g:46015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46G25, 46B04

Retrieve articles in all journals with MSC (2010): 46G25, 46B04


Additional Information

Christopher Boyd
Affiliation: School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Email: Christopher.Boyd@ucd.ie

Silvia Lassalle
Affiliation: Departamento de Matemática, Pab. I – Cuidad Universitaria (FCEN), Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Email: slassall@dm.uba.ar

DOI: https://doi.org/10.1090/S0002-9939-09-10158-2
Keywords: Integral polynomials, exposed points, extreme points
Received by editor(s): February 3, 2009
Received by editor(s) in revised form: August 11, 2009
Published electronically: November 3, 2009
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society