A NUCLEAR FRÉCHET SPACE CONSISTING OF C^∞-FUNCTIONS AND FAILING THE BOUNDED APPROXIMATION PROPERTY

DIETMAR VOGT

(Communicated by Nigel J. Kalton)

Abstract. An easy and transparent example is given of a nuclear Fréchet space failing the bounded approximation property and consisting of C^∞-functions on a subset of \mathbb{R}^3.

The problem of Grothendieck whether every nuclear Fréchet space has the bounded approximation property was open for quite a while. The first counterexample is due to Dubinsky [1, 2]. Another much simpler example was given by the author in [7]. Other examples are due to Floret [4] and Moscatelli [6]. In Dubinsky-Vogt [3] it was shown that every infinite dimensional nuclear Fréchet space not isomorphic to K^N, where $K = \mathbb{R}$ or \mathbb{C} is the scalar field, has a quotient failing the bounded approximation property.

For a nuclear Fréchet space E the bounded approximation property means the existence of a sequence $(\varphi_n)_{n \in \mathbb{N}}$ of continuous finite rank operators in E so that $\varphi_n x \to x$ for all $x \in E$.

In [7] the following criterion was established for the bounded approximation property. In [3] it was shown that it is equivalent to E being countably normed. The observation that a non-countably normed Fréchet space admitting a continuous norm will fail the bounded approximation property is due to Pelczyński.

Criterion 1. If E has the bounded approximation property and a continuous norm, then the following holds.

\begin{itemize}
 \item There exists p_0 such that for every $p \geq p_0$ we have a $q \geq p$ with the following property:
 \begin{itemize}
 \item Every sequence in E which is Cauchy with respect to $\| \|_q$ and convergent to 0 with respect to $\| \|_{p_0}$ even converges to 0 with respect to $\| \|_p$.
 \end{itemize}

 \end{itemize}

Here $\| \|_0 \leq \| \|_1 \leq \cdots$ denotes a fundamental system of continuous seminorms on E.

We use Criterion 1 to develop a scheme, how to construct nuclear Fréchet spaces without the bounded approximation property.

Let F and G be nuclear Fréchet spaces. Let again $\| \|_0 \leq \| \|_1 \leq \cdots$ denote fundamental systems of continuous seminorms on F and G respectively. We assume that G admits a continuous norm, which we may assume to be $\| \|_0$. By F_k, $k \in \mathbb{N}_0$ we denote the local Banach space with respect to $\| \|_k$, i.e. the completion of

Received by the editors January 11, 2009, and, in revised form, August 13, 2009.

2010 Mathematics Subject Classification. Primary 46A04; Secondary 46A11.

©2009 American Mathematical Society

Reverts to public domain 28 years from publication
Let $A : F \supset D(A) \to G$ be a injective closed linear map; i.e. the graph $\Gamma(A)$ is closed in $F \times G$. We assume that for any p_0 there is $p > p_0$ such that for any $q \geq p$ there is a sequence $(x_n)_n$ in F with the following properties:

1. $x_n \to 0$ with respect to $\| \cdot \|_{p_0}$;
2. $Ax_n \to 0$ with respect to $\| \cdot \|_q$;
3. there is $x \in F_q$ with $j_q^n x \not= 0$, so that $j_q^n x_n \to x$ in F_q.

Lemma 2. Then $E := D(A)$ with graph topology given by the norms $\| x \|_k + \| Ax \|_k$, $k \in \mathbb{N}_0$, is a nuclear Fréchet space without the bounded approximation property.

Proof. E is isomorphic to a closed subspace of $F \times G$, hence a nuclear Fréchet space. Then, because of (2) and (3) the sequence (x_n, Ax_n), $n \in \mathbb{N}$, is a $\| \cdot \|_q$-Cauchy sequence. Because of (1) and (2) it is a $\| \cdot \|_{p_0}$-null sequence. And, because of (2) and (3), it does not converge to 0 with respect to $\| \cdot \|_p$. Since A is injective, E is a normed space. □

We now proceed to the construction of a concrete example. We identify $\mathbb{R}^3 = \mathbb{C} \times \mathbb{R}$ with the variables (z, t). We apply the lemma to

1. $\mathcal{M} = \{(z, t) : |z| \leq 1, \; |t| < 1\}$,
2. $F = \{f \in C^\infty(\mathcal{M}) : f^{(\alpha)}(0, t) = 0, \; \text{for all } t \; \text{and } \alpha\}$,
3. $G = C^\infty(\mathcal{M})$,
4. $A = \frac{\partial f}{\partial z}$ with $D(A) = \{f \in F : \frac{\partial f}{\partial z} \in G\}$.

Here we identified $C^\infty(\mathcal{M})$ with a linear subspace of $C^\infty(\mathcal{M})$. For the nuclearity of F and G we refer to e.g. [5, 28.6 and 28.9] and remark that, by Whitney’s extension theorem, $C^\infty(\mathcal{M})$ is a quotient of $C^\infty(\Omega)$, where $\Omega = \{(z, t) \in \mathbb{R}^3 : |t| < 1\}$ is an open subset of $\mathbb{R}^3 = \mathbb{C} \times \mathbb{R}$. A is injective since $\ker A$ consists of functions, which are holomorphic in z for $|z| < 1$ and flat in $(0, t)$ for all t.

Theorem 3. The space $E = \{f \in F : \frac{\partial f}{\partial z} \in G\}$ with its natural Fréchet topology is a nuclear Fréchet space without the bounded approximation property.

Proof. We may choose the fundamental system of norms

$\| f \|_k = \sup \{|f^{(\alpha)}(z, t)| : |\alpha| \leq k, \; |z| \leq 1, \; |t| \leq t_k\}$

on F, where $t_k = \frac{k}{k+1}$, and

$\| f \|_k = \sup \{|f^{(\alpha)}(z, t)| : |\alpha| \leq k, \; (z, t) \in \mathcal{M}\}$

on G. Both spaces are nuclear and clearly A is closed and injective.

Let p_0 be given. We put $p = p_0 + 1$ and assume $q \geq p$.

We choose $\varphi \in \mathscr{D}(\mathbb{D})$, \mathbb{D} the unit disc, such that $\varphi \equiv 1$ in a neighborhood of 0, and $\psi \in \mathscr{D}[t_{p_0}, 1]$ with $\psi(t_p) \not= 0$. We define

$f_n(z, t) = \psi(t)(1 - \varphi(nz))z^{q+2}$.

1. $\| f_n \|_{p_0} = 0$ for all n.
2. We have with a suitable constant C:

$|f_{n, z}|_q = |\psi(t)\varphi(nz)z^{q+2}|_q \leq C n^{-1}$.

That means $\| Af_n \|_q \to 0$.
3. With a suitable constant C, we have
\[\|f_n(z,t) - \psi(t) z^{q+2}\|_q = \|\psi(t) \varphi(nz) z^{q+2}\|_q \leq C n^{-2}. \]
That means $f_n \to \psi z^{q+2} \in F_q$ with respect to $\| \cdot \|_q$ where
\[\|\psi(t) z^{q+2}\|_p \neq 0. \]
The result follows from Lemma 2.

Let us finally remark that in [8] there was given an easy example of a nuclear Fréchet space consisting of C^∞-functions which has no basis, namely the space
\[E = \{ f \in C^\infty(\mathbb{R}^2) : f|_M \in \mathcal{S}(M) \} \]
with its natural Fréchet topology, where
\[M = \{(x,y) \in \mathbb{R}^2 : x \geq 0, |\sin y| \leq e^{1-\frac{1}{x}} \}. \]
Here $\mathcal{S}(M)$ denotes the space of all C^∞-functions on M which are rapidly decreasing for $|x| \to \infty$ with all their derivatives and we set $\exp(-\frac{1}{x}) = 0$. It might be useful to remark that the existence of a basis implies the bounded approximation property. So the present example, being likewise easy, provides much sharper properties.

REFERENCES

8. Vogt, D., A nuclear Fréchet space of C^∞-functions which has no basis, Note Mat. 25 (2005/06), 187-190. MR2259965 (2007g:46004)

FACHBEREICH C–MATHEMATIK UND NATURWISSENSCHAFTEN, BERGISCHE UNIVERSITÄT WUPPERTAL, D-42097 WUPPERTAL, GERMANY
E-mail address: dvogt@math.uni-wuppertal.de

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use