On the values of a class of Dirichlet series at rational arguments

Authors:
K. Chakraborty, S. Kanemitsu and H.-L. Li

Journal:
Proc. Amer. Math. Soc. **138** (2010), 1223-1230

MSC (2010):
Primary 11M35; Secondary 33B15

Published electronically:
December 4, 2009

MathSciNet review:
2578516

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we shall prove that the combination of the general distribution property and the functional equation for the Lipschitz-Lerch transcendent capture the whole spectrum of deeper results on the relations between the values at rational arguments of functions of a class of zeta-functions. By Theorem 1 and its corollaries, we can cover all the previous results in a rather simple and lucid way. By considering the limiting cases, we can also deduce new striking identities for Milnor's gamma functions, among which is the Gauss second formula for the digamma function.

**[Ap]**Tom M. Apostol,*Introduction to analytic number theory*, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR**0434929****[CK1]**Djurdje Cvijović and Jacek Klinowski,*New formulae for the Bernoulli and Euler polynomials at rational arguments*, Proc. Amer. Math. Soc.**123**(1995), no. 5, 1527–1535. MR**1283544**, 10.1090/S0002-9939-1995-1283544-0**[CK2]**Djurdje Cvijović and Jacek Klinowski,*Closed-form summation of some trigonometric series*, Math. Comp.**64**(1995), no. 209, 205–210. MR**1270616**, 10.1090/S0025-5718-1995-1270616-8**[K]**S. Kanemitsu,*On evaluation of certain limits in closed form*, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 459–474. MR**1024583****[Vista]**Shigeru Kanemitsu and Haruo Tsukada,*Vistas of special functions*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. MR**2352572****[Le]**Leonard Lewin,*Polylogarithms and associated functions*, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR**618278****[LHK]**H.-L. Li, M. Hashimoto and S. Kanemitsu, On structural elucidation of Eisenstein's formula, to appear.**[Mil]**John Milnor,*On polylogarithms, Hurwitz zeta functions, and the Kubert identities*, Enseign. Math. (2)**29**(1983), no. 3-4, 281–322. MR**719313****[MS]**M. Ram Murty and N. Saradha,*Transcendental values of the digamma function*, J. Number Theory**125**(2007), no. 2, 298–318. MR**2332591**, 10.1016/j.jnt.2006.09.017**[S1]**H. M. Srivastava,*A note on the closed-form summation of some trigonometric series*, Kobe J. Math.**16**(1999), no. 2, 177–182. MR**1745023****[S2]**H. M. Srivastava,*Some formulas for the Bernoulli and Euler polynomials at rational arguments*, Math. Proc. Cambridge Philos. Soc.**129**(2000), no. 1, 77–84. MR**1757780**, 10.1017/S0305004100004412**[SC]**H. M. Srivastava and Junesang Choi,*Series associated with the zeta and related functions*, Kluwer Academic Publishers, Dordrecht, 2001. MR**1849375****[Y]**Yoshihiko Yamamoto,*Dirichlet series with periodic coefficients*, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) Japan Soc. Promotion Sci., Tokyo, 1977, pp. 275–289. MR**0450213**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11M35,
33B15

Retrieve articles in all journals with MSC (2010): 11M35, 33B15

Additional Information

**K. Chakraborty**

Affiliation:
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India

Email:
kalyan@hri.res.in

**S. Kanemitsu**

Affiliation:
Graduate School of Advanced Technology, Kinki University, Iizuka, Fukuoka 820-8555, Japan

Email:
kanemitu@fuk.kindai.ac.jp

**H.-L. Li**

Affiliation:
Department of Mathematics, Weinan Teachers College, Weinan, Shaanxi, 714000, People’s Republic of China

Email:
lihailong@wntc.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-09-10171-5

Keywords:
Lipschitz-Lerch transcendent,
Hurwitz zeta function,
polylogarithm function,
Gauss' second formula,
Milnor's gamma function.

Received by editor(s):
December 28, 2008

Received by editor(s) in revised form:
August 18, 2009

Published electronically:
December 4, 2009

Dedicated:
Dedicated to Professor Eiichi Bannai on his sixtieth birthday, with great respect and friendship

Communicated by:
Ken Ono

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.