POLYNOMIALS NON-NEGATIVE ON A STRIP

M. MARSHALL

(Communicated by Ted Chinburg)

Abstract. We prove that if \(f(x, y) \) is a polynomial with real coefficients which is non-negative on the strip \([0, 1] \times \mathbb{R}\), then \(f(x, y) \) has a presentation of the form

\[
f(x, y) = \sum_{i=1}^{k} g_{i}(x, y)^{2} + \sum_{j=1}^{l} h_{j}(x, y)^{2}(1-x),
\]

where the \(g_{i}(x, y) \) and \(h_{j}(x, y) \) are polynomials with real coefficients.

1. Introduction

In [2] Hilbert showed that there are polynomials \(f(x, y) \in \mathbb{R}[x, y] \) (necessarily of degree \(\geq 6 \)) which are non-negative on all of \(\mathbb{R}^2 \) but are not expressible as a sum of squares in \(\mathbb{R}[x, y] \). The best-known example is the polynomial \(f(x, y) = 1 - 3x^2 y^2 + x^4 y^2 + x^2 y^4 \). In contrast to this result, we prove:

Theorem 1.1. Suppose \(f(x, y) \in \mathbb{R}[x, y] \) is non-negative on the strip \([0, 1] \times \mathbb{R}\). Then \(f(x, y) \) is expressible as

\[
f(x, y) = \sigma(x, y) + \tau(x, y)(1-x),
\]

where \(\sigma(x, y), \tau(x, y) \) are sums of squares in \(\mathbb{R}[x, y] \).

This answers questions in [3] and [10] arising from the solution of the moment problem for cylinders with compact cross-section; see [3] and [16]. In [10] the authors claimed to know a proof of the result, but this claim was later withdrawn. Certain weak versions of the result were known already; see [3], [8] and [9].

A preordering of a ring \(A \) (commutative with 1) is a subset \(T \) of \(A \) satisfying \(T+T \subseteq T, TT \subseteq T \) and \(f^2 \in T \) for all \(f \in A \). The unique smallest preordering of \(A \) is \(\sum A^2 := \) the set of all (finite) sums of squares of elements of \(A \). The preordering of \(A \) generated by finitely many elements \(g_1, \cdots, g_s \) of \(A \) consists of all elements of the form \(\sum \sigma_i g_i^i \), \(\sigma_i \in \sum A^2 \), \(g^i := g_1^{i_1} \cdots g_s^{i_s}, i := (i_1, \cdots, i_s) \) running through the set \([0, 1]^s\).

A finitely generated preordering \(T \) of the polynomial ring \(\mathbb{R}[x_1, \cdots, x_n] \) is said to be **saturated** if, for all \(f \in \mathbb{R}[x_1, \cdots, x_n], f \geq 0 \) on \(K_T \Rightarrow f \in T \). Here, \(K_T := \{ a \in \mathbb{R}^n | \forall g \in T, g(a) \geq 0 \} \). If \(g_1, \cdots, g_s \) are generators of \(T \), then \(K_T \) is the subset of \(\mathbb{R}^n \) defined by the polynomial inequalities \(g_i \geq 0, i = 1, \cdots, s \).
By [12] Prop. 6.1, a finitely generated preorder T of $R[x_1, \ldots, x_n]$ cannot be saturated if $\dim(K_T) \geq 3$. By [14] Th. 5.4, the same is true for $\dim(K_T) = 2$, if T is stable. The preordering of $R[x, y]$ consisting of sums of squares is stable, so the result of Hilbert referred to earlier can be seen as a special case of this latter result. Theorem [13] asserts that the preordering of $R[x, y]$ generated by $x(1 - x)$ is saturated. The identities $x = x^2 + (1 - x)^2$ and $1 - x = x(1 - x) + (1 - x)^2$ imply that the preordering generated by $x(1 - x)$ coincides with the preordering generated by x and $1 - x$. Before the present paper was written, the only example of a finitely generated saturated preordering in the 2-dimensional non-compact case was the rather artificial example given in [15] Rem. 3.14 (the preordering of $R[x, y]$ generated by $x, 1 - x, y$ and $1 - xy$). It is hoped that the techniques employed in the present paper will yield additional examples of this sort in the future. See [1] and [15] for examples of finitely generated saturated preorderings in the 2-dimensional compact case. See [3, 7, 12] and [13] for 1-dimensional examples.

2. Preliminary reductions

We assume $f \in R[x, y], f \geq 0$, on the strip $[0, 1] \times R$. We want to show f has a presentation $f = \sigma + \tau x(1 - x)$, with σ, τ sums of squares in $R[x, y]$. By considering the behavior of f as $|y| \to \infty$, we see that f has even degree $2d$, as a polynomial in y, and that the leading coefficient is ≥ 0 on $[0, 1]$, i.e., f has the form $f(x, y) = \sum_{i=0}^{2d} a_i(x)y^i, a_i(x) \in R[x], a_{2d}(x) \geq 0$ on $[0, 1]$. If $d = 0$ the result is well-known, e.g., by [3, Th. 2.2] or [4, Prop. 2.7.3], so we assume always that $d \geq 1$.

Lemma 2.1. We may assume $a_{2d}(x) > 0$ on $[0, 1]$.

Proof. Factor a_{2d} as $a_{2d} = \bar{a} a$, where $\bar{a}, a \in R[x], \bar{a} > 0$ on $[0, 1]$ and \bar{a} is ± 1 times a product of linear factors $x - r, r \in [0, 1]$. Then

\[a^{2d-1}f = \bar{a}a^d \bar{a}y^{2d} + a_{2d-1}^d \bar{a}y^{2d-1} + \cdots + a_0 \bar{a}a^{2d-1}. \]

Let $g := \bar{a}y^{2d} + a_{2d-1}^d \bar{a}y^{2d-1} + \cdots + a_0 \bar{a}a^{2d-1}$. Using the fact that $\bar{a} \geq 0$ on $[0, 1]$ and the set of points (r, s) in the strip $[0, 1] \times R$ satisfying $\bar{a}(r) \neq 0$ is dense in the strip, one sees that $g \geq 0$ on the strip. If we are able to show that $g = \sigma + \tau x(1 - x)$, with σ, τ sums of squares in $R[x, y]$, then $\bar{a}(x)^{2d-1}f(x, y) = \sigma(x, \bar{a}(x)y) + \tau(x, \bar{a}(x)y)x(1 - x)$. Thus we are reduced to showing that if $b(x)f(x, y)$ has a presentation $b(x)f(x, y) = \sigma(x, y) + \tau(x, y)x(1 - x)$ for some sums of squares $\sigma(x, y), \tau(x, y)$, where $b(x) \geq 0$ on the interval $[0, 1]$ and $b(x)$ is ± 1 times a product of linear factors $x - r, r \in [0, 1]$, then $f(x, y)$ also has such a presentation. The proof is by induction on the degree of $b(x)$. Suppose $x - r$ is a factor of $b(x), 0 \leq r \leq 1$. First suppose $0 < r < 1$. Then $b(x) = b(x)(x - r)^2$. Also, $\sigma(x, y)$ and $\tau(x, y)$ vanish at $x = r$, so $\sigma(x, y) = \sigma(x, y)(x - r)^2, \tau(x, y) = \tau(x, y)(x - r)^2$, with $\sigma(x, y), \tau(x, y)$ sums of squares in $R[x, y]$, and $f(x, y) = \sigma(x, y) + \tau(x, y)x(1 - x)$. If $r = 0$, then $b(x) = b(x)x$ and $\sigma(x, y) = \sigma(x, y)x^2, \tau(x, y) = \tau(x, y)x$ a sum of squares in $R[x, y]$, and $f(x, y) = \sigma(x, y)x + \tau(x, y)(1 - x)$. Using $x = x^2 + x(1 - x)$ and $1 - x = (1 - x)^2 + x(1 - x)$ this yields $b(x)f(x, y) = \sigma'(x, y) + \tau'(x, y)(1 - x)$, where $\sigma'(x, y)$ and $\tau'(x, y)$ are sums of squares in $R[x, y]$. The argument for $r = 1$ is basically the same as that for $r = 0$. □

Lemma 2.2. We may assume f has only finitely many zeros in the strip $[0, 1] \times R$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof: If \(f = g^2h \), then, using the fact that the set of points \((a, b)\) in the strip satisfying \(g(a, b) \neq 0 \) is dense in the strip \([1\) Prop. 1.1.2], we see that \(h \geq 0 \) on the strip. So we are reduced to showing the result for \(h \). Thus we are reduced to the case where \(f \) is square-free. Since \(x \) and \(1 - x \) do not divide \(f \) (because they do not divide \(a_{2d} \)), \(f \) has only finitely many zeros on the boundary of the strip. If some irreducible factor \(p \) of \(f \) has infinitely many zeros in the interior of the strip, then \(p \) has a non-singular zero \((a, b)\) in the interior of the strip which is not a zero of any other irreducible factor of \(f \) \([1\) Lem. 9.4.1]. Then \(p \) changes sign at \((a, b)\), but each other irreducible factor of \(f \) has constant sign in a neighborhood of \((a, b)\), contradicting the fact that \(f \) is \(\geq 0 \) on the strip. It follows that \(f \) has only finitely many zeros in the strip. \(\square \)

If \(f \) is square-free, then no irreducible factor of \(f \) can change sign in the interior of the strip, so each irreducible factor has constant sign on the strip. Replacing \(p \) by \(-p \) if necessary, for each irreducible factor \(p \) we may assume each irreducible factor of \(f \) is \(\geq 0 \) on the strip. In this way we are reduced further to the case where \(f \) itself is irreducible. But this does not seem to help us much in the proof.

3. The idea of the proof

Consider the case where the polynomial \(f(x, y) := \sum_{i=0}^{2d} a_i(x)y^i \) is positive on \([0, 1] \times \mathbb{R} \), and \(a_{2d}(x) > 0 \) on \([0, 1] \). The form \(F(x, y, z) := \sum_{i=0}^{2d} a_i(x)y^i z^{2d-i} \) is positive for \(0 \leq x \leq 1 \), \((y, z) \neq (0, 0)\) (since \(F(x, y, z) = z^{2d} f(x, \frac{y}{z}) \) if \(z \neq 0 \)), so it achieves a positive minimum \(\epsilon \) on the compact set

\[\{ (x, y, z) \mid 0 \leq x \leq 1 \text{ and } y^2 + z^2 = 1 \} \]

Then, on the strip \([0, 1] \times \mathbb{R} \),

\[f(x, y) = F(x, y, 1) = F(x, \frac{y}{\sqrt{1 + y^2}}, \frac{1}{\sqrt{1 + y^2}})(1 + y^2)^d \geq \epsilon(1 + y^2)^d. \]

Using this, the argument in \([3\) Th. 5.1\] shows that \(f(x, y) \) has the required presentation. See \([3\) Th. 2.2\] for additional explanation.

In the general case, one cannot possibly have such an \(\epsilon \). The idea is to replace \(\epsilon \) by a polynomial \(\epsilon(x) \). Specifically, we look for a polynomial \(\epsilon(x) \in \mathbb{R}[x] \) such that

\[f(x, y) \geq \epsilon(x)(1 + y^2)^d \]

holds on the strip, \(\epsilon(x) \geq 0 \) on \([0, 1] \), and, \(\forall x \in [0, 1] \), \(\epsilon(x) = 0 \) iff \(f(x, y) = 0 \) for some \(y \in \mathbb{R} \). It is always possible to find such a polynomial \(\epsilon(x) \), assuming that \(a_{2d}(x) > 0 \) on \([0, 1] \) and \(f(x, y) \) has only finitely many zeros in the strip. Once this is established, one can show that a modified version of the argument in \([3\) Th. 5.1\] carries through, with \(\epsilon \) replaced by \(\epsilon(x) \). This latter part of the argument is a bit technical: it is necessary to take pains to ensure that the continuous functions considered are analytic at the points where \(\epsilon(x) = 0 \) and to use a refined version of the Weierstrass Approximation Theorem.
4. The additional ingredients

We establish the additional results that we need in the proof of Theorem \[\text{[1.1]}\]

Lemma 4.1. Suppose \(f \in \mathbb{R}[x, y]\) is non-negative on a strip of the form \([0, \epsilon) \times \mathbb{R}\), \(\epsilon > 0\), \(f\) has only finitely many zeros in this strip, and the leading coefficient of \(f\) is positive on the interval \([0, \epsilon)\). Then there exists a real constant \(C > 0\), an even integer \(m \geq 0\), and a real number \(\delta\), \(0 < \delta \leq \epsilon\), such that \(f(x, y) \geq C x^m\) holds on the strip \([0, \delta) \times \mathbb{R}\). If \(f\) has no real zeros on the \(y\)-axis, we may take \(m = 0\).

We denote by \(k((x))\) the formal power series field over a field \(k\), i.e., the field of fractions of the formal power series ring \(k[[x]]\).

Proof. The leading coefficient of \(f\) is positive at zero; in particular, it is a unit in \(\mathbb{R}[x]\). By Puiseux’s Theorem, \(f\) factors into linear factors in \(\mathbb{C}((x^{\frac{1}{n}}))[y]\), for some \(n \geq 1\). Each root has the form \(z = \sum_{i=0}^{\infty} a_i x^{\frac{i}{n}}\), \(a_i \in \mathbb{C}\), and is a complex analytic function of \(x^{\frac{1}{n}}\) in a neighborhood of zero. \(\exists \) another root of \(f\), and \(\tau \neq z\). (If all the \(a_i\) were real, then the equation \(y = \sum_{i=0}^{\infty} a_i x^{\frac{i}{n}}\) would define a real half-branch in the zero set of \(f\), for \(x\) close to zero, \(x > 0\), contradicting our assumption that \(f\) has only finitely many zeros in the strip \([0, \epsilon) \times \mathbb{R}\).) Write \(a_i = b_i + c_i \sqrt{-1}\), \(b_i, c_i \in \mathbb{R}\), so \(z = z_1 + z_2 \sqrt{-1}\), \(z = z_1 - z_2 \sqrt{-1}\), where \(z_1 = \sum b_i x^{\frac{i}{n}}\), \(z_2 = \sum c_i x\frac{i}{n}\), so \((y - z)(y - \tau) = (y - z_1)^2 + (\frac{z_2}{n})^2\). Let \(k = \frac{m}{n}\) be the order of \(z_2\) at zero, i.e., the least \(\frac{1}{n}\) such that \(c_i \neq 0\). For any real \(x > 0\) close to zero and any \(y \in \mathbb{R}\),

\[
(\frac{y - z}{x^{\frac{k}{2}}})(\frac{y - \tau}{x^{\frac{k}{2}}}) = (\frac{y - z_1}{x^{\frac{k}{2}}})^2 + (\frac{z_2}{x^{\frac{k}{2}}})^2,
\]

and \(\frac{1}{x^{\frac{k}{2}}}\) is a real number close to the non-zero real constant \(c_{i_0}\). This implies there exists a real constant \(C > 0\) such that \(\frac{(y - z)(y - \tau)}{x^{\frac{k}{2}}} > C\) for all real \(x > 0\) sufficiently close to zero and all real \(y\). Note: If \(f\) has no real zeros on the \(y\)-axis, then \(a_0\) is not real; i.e., \(a_0 \neq 0\), so \(k = 0\). Factoring \(f\) as \(f(x, y) = a(x) \prod_{i=1}^{d} (y - z_i)(y - \tau_i)\), where \(a(x)\) is the leading coefficient, this yields rationals \(k_i \geq 0\) and real constants \(C_i > 0\)

\[
f(x, y) = a(x) \prod_{i=1}^{d} (y - z_i)(y - \tau_i) = a(x) \prod_{i=1}^{d} C_i
\]

for all real \(y\) and all real \(x > 0\) sufficiently close to zero. Finally, \(f(x, y) \geq C x^m\) for any real \(x \geq 0\) sufficiently close to zero and any \(y \in \mathbb{R}\), where \(C\) is \(\prod_{i=1}^{d} C_i\) times the minimum value of \(a(x)\) on \([0, \frac{\epsilon}{2}]\) and \(m\) is the least even integer \(\geq 2 \sum_{i=1}^{d} k_i\). \(\square\)

Lemma 4.2. Suppose \(f(x, y) = \sum_{i=0}^{2d} a_i(x)y^i\) is non-negative on the strip \([0, 1] \times \mathbb{R}\), \(f(x, y)\) has only finitely many zeros in the strip, and \(a_{2d}(x)\) is positive on the interval \([0, 1]\). Then there exists a polynomial \(\epsilon(x) \in \mathbb{R}[x]\), \(\epsilon(x) \geq 0\) on \([0, 1]\), such that \(f(x, y) \geq \epsilon(x)(1 + y^2)^d\) holds on the strip and, for each \(x \in [0, 1]\), \(\epsilon(x) = 0\) if there exists \(y \in \mathbb{R}\) such that \(f(x, y) = 0\).

Proof. For each \(r \in [0, 1]\), by Lemma 4.1 (applied to the new variables \(t = x - r\) and \(t = r - x\), or just to \(t = x - r\), resp., just to \(t = x - r\), if \(r = 0\), resp., if \(r = 1\)) we have a real constant \(C > 0\) and an even integer \(m \geq 0\) (with \(m = 0\) if \(f\) has no real zeros on the line \(x = r\)), such that \(f(x, y) \geq C(x - r)^m\) holds for all \((x, y)\) in the strip, with \(x\) sufficiently close to \(r\). By compactness of the interval \([0, 1]\), there are finitely many \(0 \leq r_1 < \cdots < r_k \leq 1\) and finitely many positive constants \(C_i\) and
even integers \(m_i \geq 0 \) (with \(m_i = 0 \) if \(f \) has no real zeros on the line \(x = r_i \)) such that, for each \((x, y)\) in the strip, \(f(x, y) \geq C_i(x - r_i)^{m_i} \), for some \(i \). We may assume each \(C_i \) is \(\leq 1 \). Then \(C_i(x - r_i)^{m_i} \geq \prod_{j=1}^{k} C_j(x - r_j)^{m_j} \) for each \(x \in [0, 1] \) and each \(i \). Thus \(f(x, y) \geq \epsilon_1(x) \) holds on the strip, where \(\epsilon_1(x) := \prod_{j=1}^{k} C_j(x - r_j)^{m_j} \).

Since \(f(x, y) \) has only finitely many zeros in the strip, there exists a real constant \(M > 0 \) such that \(f(x, y) > 0 \) if \(|y| \geq M \), \(0 \leq x \leq 1 \). Arguing with the form \(F(x, y, z) := \sum_{i=0}^{2d} a_i(x) y^i z^{2d-i} \) as in Section 3, but with \(S^1 = \{(y, z) \mid y^2 + z^2 = 1\} \) replaced by the set \(\{(y, z) \mid |y|^2 + z^2 = 1, |y| \geq M|z|\} \), we see there exists a positive constant \(C \) such that \(f(x, y) \geq C(1 + y^2)^d \) for all \((x, y)\) in the strip satisfying \(|y| \geq M\). If \(|y| \leq M\), then \(1 + y^2 \leq 1 + M^2 \), and \(\frac{f(x, y)}{(1+y^2)^d} \geq \frac{f(x, y)}{(1+M^2)^d} \geq C \epsilon_1(x) \). If \(|y| \geq M\), \(\frac{f(x, y)}{(1+y^2)^d} \geq C \geq \frac{C}{\epsilon_1(x)} \), where \(D := \max\{\epsilon_1(x) \mid x \in [0, 1]\} \). So, in any case, \(\frac{f(x, y)}{(1+y^2)^d} \geq C \epsilon(x) \) holds on the strip, where

\[
\epsilon(x) := \min\left\{ \frac{1}{(1+M^2)^d} \frac{C}{D} \epsilon_1(x) \right\}.
\]

Lemma 4.3. Suppose \(f \in \mathbb{R}[x, y] \) and there exists \(\epsilon > 0 \) such that \(f \) is non-negative on the strip \((-\epsilon, \epsilon) \times \mathbb{R}\) and the leading coefficient of \(f \) is positive on the interval \((-\epsilon, \epsilon)\). Then there exist \(g_1, g_2 \) polynomials in \(y \) whose coefficients are analytic functions of \(x \) defined in a neighborhood of zero, such that \(f = g_1^2 + g_2^2 \), for \(x \) sufficiently close to zero.

Proof. Let \(p \) be an irreducible factor of \(f \) in \(\mathbb{C}((x))[y] \) which is monic. By Puiseux’s Theorem, \(p \) factors in \(\mathbb{C}((x))[(y^\frac{1}{m})] \), where \(m \) is the degree of \(p \), as \(p = \prod_{\omega \in \mu_n} (y - z_\omega) \), where \(\mu_n \) denotes the group of complex \(n \)-th roots of 1, and \(z_\omega = \sum_{i=0}^{\infty} a_i \omega^i x^\frac{1}{m} \) for each \(\omega \in \mu_n \), where the \(a_i \) are complex numbers. The \(z_\omega \) are complex analytic functions of \(x^\frac{1}{m} \) in a neighborhood of zero [11, Sect. 12.3]. The coefficients of \(p \) are elementary symmetric functions of the roots and so are complex analytic functions of \(x \) in some neighborhood of zero. Denote by \(\overline{p} \) the polynomial in \(\mathbb{C}((x))[y] \) obtained from \(p \) by conjugating coefficients in the obvious way. \(\overline{p} \) is an irreducible factor of \(f \). If \(\overline{p} = p \), then \(z_1 \) coincides with one of the \(\overline{z}_\omega := \sum_{i=0}^{\infty} a_i \omega^i x^\frac{1}{m} \). This implies, in turn, that there are (two) real half-branches of \(f \) coming from \(p \). Since \(p \) changes sign at any such half-branch, \(p \) must appear in \(f \) with even multiplicity in this case. Thus \(f \) has a factorization of the form \(f = a(x) \prod_{i=1}^{k} p_i \overline{p}_i \), where each \(p_i \) is irreducible and \(a(x) \) is the leading coefficient. Then \(f = g_1^2 \), where \(g = \sqrt{a(x)} p_1 \cdots p_k \). Decomposing \(g \) as \(g = g_1 + g_2 \sqrt{-1}, g_1, g_2 \in \mathbb{R}((x))[y] \), this yields \(f = g_1^2 + g_2^2 \).

Lemma 4.4. Suppose \(f \in \mathbb{R}[x, y] \) is non-negative on the strip \([0, 1] \times \mathbb{R}\) and the leading coefficient of \(f \) is positive on the interval \([0, 1]\). Then:

1. For each \(r \in (0, 1) \), there exist \(g_1, g_2 \) polynomials in \(y \) with coefficients analytic functions in \(x \) in some neighborhood of \(r \) such that \(f = g_1^2 + g_2^2 \) holds for \(x \) sufficiently close to \(r \).
(2) There exist \(g_{ij}, i, j = 1, 2 \), polynomials in \(y \) with coefficients analytic functions in \(x \) in some neighborhood of 0 such that \(f = \sum_{i=1}^{2} g_{i1}^2 + \sum_{i=1}^{2} g_{i2}^2 x \) holds for \(x \) sufficiently close to 0.

(3) There exist \(g_{ij}, i, j = 1, 2 \), polynomials in \(y \) with coefficients analytic functions in \(x \) in some neighborhood of 1 such that \(f = \sum_{i=1}^{2} g_{i1}^2 + \sum_{i=1}^{2} g_{i2}^2 (1 - x) \) holds for \(x \) sufficiently close to 1.

Proof. For (1), apply Lemma 4.3 viewing \(f \) as a polynomial in \(x - r \) and \(y \). For (2), apply Lemma 4.3 viewing \(f \) as a polynomial in \(\sqrt{x} \) and \(y \), to obtain \(f = g_1^2 + g_2^2 \) with \(g_i \) a polynomial in \(y \) with coefficients analytic in \(\sqrt{x} \), \(i = 1, 2 \). Decomposing each of the coefficients, using \(\sum_{k} a_k x^{k} = \sum_{k} a_{2k} x^{k} + \sum_{k} a_{2k+1} x^{k} \sqrt{x} \), yields \(g_i = g_{i1} + g_{i2} \sqrt{x} \), where the \(g_{ij} \) are polynomials in \(y \) with coefficients analytic functions of \(x \) near \(x = 0 \). Expanding \(g_i^2, i = 1, 2 \), then yields \(f = \sum_{i=1}^{2} g_{i1}^2 + \sum_{i=1}^{2} g_{i2}^2 x + 2 \sum_{i=1}^{2} g_{i1} g_{i2} \sqrt{x} \), so \(f = \sum_{i=1}^{2} g_{i1}^2 + \sum_{i=1}^{2} g_{i2}^2 x \) and \(\sum_{i=1}^{2} g_{i1} g_{i2} = 0 \). The proof of (3) is similar to the proof of (2).

\[\square \]

Proposition 4.5. Suppose \(\phi, \psi : [0, 1] \to \mathbb{R} \) are continuous functions, \(\phi(x) \leq \psi(x) \) for all \(x \in [0, 1] \), and \(\phi(x) < \psi(x) \) for all but finitely many \(x \in [0, 1] \). If \(\phi \) and \(\psi \) are analytic at each point \(a \in [0, 1] \) where \(\phi(a) = \psi(a) \), then there exists a polynomial \(p(x) \in \mathbb{R}[x] \) such that \(\phi(x) \leq p(x) \leq \psi(x) \) holds for all \(x \in [0, 1] \).

Proof. Induct on the number of points \(a \in [0, 1] \) satisfying \(\phi(a) = \psi(a) \). If there are no such points, existence of \(p(x) \) follows from the Weierstrass Approximation Theorem. Suppose \(a \in [0, 1] \) is such that \(\phi(a) = \psi(a) \). Let \(k \) be the vanishing order of \(\psi - \phi \) at \(a \). If \(a \in (0, 1) \), then \(k \) is even. In this case, \(\phi(x) = f(x) + (x - a)^k \phi_1(x) \), \(\psi(x) = f(x) + (x - a)^k \psi_1(x) \), where \(f(x) \in \mathbb{R}[x], \phi_1(x), \psi_1(x) \) are analytic at \(a \), and \(\phi_1(a) < \psi_1(a) \). Extend \(\phi_1, \psi_1 \) to continuous functions \(\phi_1, \psi_1 : [0, 1] \to \mathbb{R} \) by defining \(\phi_1(x) = \frac{\phi(x) - \phi(a)}{(x-a)^k} \), \(\psi_1(x) = \frac{\psi(x) - \psi(a)}{(x-a)^k} \) for \(x \neq a \). Then \(\phi_1(x) \leq \psi_1(x) \) for all \(x \in [0, 1] \), and, \(\forall b \in [0, 1], \phi_1(b) = \psi_1(b) \iff \phi(b) = \psi(b) \) and \(b \neq a \). By induction we have \(p_1(x) \in \mathbb{R}[x] \) such that \(\phi_1(x) \leq p_1(x) \leq \psi_1(x) \) on \([0, 1] \). Take \(p(x) = f(x) + (x - a)^k p_1(x) \). The case where \(a = 0 \) and the case where \(a = 1 \) are dealt with in a similar fashion. \(\square \)

5. The End of the Proof

Let \(f(x, y) = \sum_{i=0}^{2d} a_i(x)y^i, d \geq 1 \). By Lemmas 2.1 and 2.2 we can assume \(a_{2d}(x) > 0 \) on the interval and \(f(x, y) \) has only finitely many zeros in \([0, 1] \times \mathbb{R}\). By Lemma 4.2 there exists a polynomial \(\epsilon(x) \in \mathbb{R}[x] \) such that \(f(x, y) \geq \epsilon(x)(1 + y^2)^d \) on the strip, \(\epsilon(x) \geq 0 \) on \([0, 1]\), and \(\epsilon(x) = 0 \) iff \(\exists y \in \mathbb{R} \) with \(f(x, y) = 0 \). Let \(f_1(x, y) := f(x, y) - \epsilon(x)(1 + y^2)^d \). Then \(f_1 \) is \(\geq 0 \) on the strip. Replacing \(\epsilon(x) \) by \(\frac{\epsilon(x)}{N} \), \(N > 1 \), if necessary, we can assume \(f_1 \) has degree \(2d \) (as a polynomial in \(y \)) and the leading coefficient of \(f_1 \) is positive on \([0, 1]\).

By Lemma 4.3 for each \(r \in [0, 1] \), there exists an open neighborhood \(U(r) \) of \(r \) in \(\mathbb{R} \) such that \(f_1 \) decomposes as

\[
 f_1 = \sum_{j=1}^{2} g_{0j}(r)^2 + \sum_{j=1}^{2} g_{1j}(r)^2 x + \sum_{j=1}^{2} g_{2j}(r)^2 (1 - x)
\]

\[\text{Proposition 4.5 is probably well-known. The author only became aware of Proposition 4.5 and its simple proof through reading an unpublished manuscript of V. Powers.} \]
on \(U(r) \times \mathbb{R}\), where the \(g_{ij}(r)\) are polynomials in \(y\) (of degree \(\leq d\)) whose coefficients are analytic functions of \(x\), for \(x \in U(r)\). By compactness of \([0,1]\), finitely many of the \(U(r)\) cover \([0,1]\), say \(U(r_1), \ldots, U(r_k)\) cover \([0,1]\). Choose a continuous partition of unity \(1 = \nu_1 + \cdots + \nu_k\) on \([0,1]\), with \(0 \leq \nu_k \leq 1\) on \([0,1]\) and \(\text{supp}(\nu_k) \subseteq U(r_k)\) for \(k = 1, \ldots, \ell\), having the additional property that, for each root \(r\) of \(\epsilon(x)\) in \([0,1]\), there is just one \(k\) such that \(\nu_k(x) \neq 0\) close to \(r\) (so \(\nu_k(x) = 1\) for \(x\) close to \(r\)). One way to ensure the last property is to shrink the covering sets \(U(r_k)\) ahead of time so that each root \(r\) of \(\epsilon(x)\) in \([0,1]\) lies in some unique \(U(r_k)\). Then \(f_1\) decomposes as

\[
f_1 = \sum_{k=1}^{\ell} \nu_k f_1 = \sum_{k=1}^{\ell} \left(\sum_{j=1}^{2} \phi_{0jk}^2 + \sum_{j=1}^{2} \phi_{1jk}^2 x + \sum_{j=1}^{2} \phi_{2jk}^2 (1-x) \right)
\]

on \([0,1] \times \mathbb{R}\), where \(\phi_{ijk}\) denotes the polynomial of degree \(\leq d\) in \(y\) whose coefficients are the functions from \([0,1]\) to \(\mathbb{R}\) obtained by extending the corresponding coefficients of \(\sqrt{\nu_k} g_{ij}(r_k)\) by zero off \(U(r_k)\). The coefficients of the \(\phi_{ijk}\) are continuous on \([0,1]\) and analytic at each of the roots of \(\epsilon(x)\) in \([0,1]\) (since \(\nu_k\) is constantly 0 or 1 in a neighborhood of each of these roots).

By Proposition 4.5, for each real \(N > 0\) and each triple \(i, j, k\), there exists a polynomial \(h_{ijk}\) of degree \(\leq d\) in \(y\) with coefficients in \(\mathbb{R}[x]\) such that, for each coefficient \(u\) of \(\phi_{ijk}\), the corresponding coefficient \(w\) of \(h_{ijk}\) satisfies

\[
u(x) - \frac{\epsilon(x)}{N} \leq w(x) \leq u(x) + \frac{\epsilon(x)}{N}, \text{ for each } x \in [0,1].
\]

At this point we proceed as in the proof of [3, Th. 5.1], approximating the coefficients of the \(\phi_{ijk}\) closely by polynomials (by taking \(N\) sufficiently large), to obtain polynomials \(h_{ijk}\) of degree \(\leq d\) in \(y\) with coefficients in \(\mathbb{R}[x]\) such that

\[
f_1(x, y) = \sum_{k=1}^{\ell} \left(\sum_{j=1}^{2} h_{0jk}(x, y)^2 + \sum_{j=1}^{2} h_{1jk}(x, y)^2 x + \sum_{j=1}^{2} h_{2jk}(x, y)^2 (1-x) \right) + \sum_{i=0}^{2d} b_i(x) y^i,
\]

\(b_i(x) \in \mathbb{R}[x]\), \(|b_i(x)| \leq \frac{2\epsilon(x)}{N}\) on \([0,1]\), \(i = 0, \ldots, 2d\). Combining this with \(f(x, y) = f_1(x, y) + \epsilon(x)(1 + y^2)^d\) yields \(f(x, y) = s_1(x, y) + s_2(x, y) + s_3(x, y)\), where

\[
s_1(x, y) := \sum_{k=1}^{\ell} \left(\sum_{j=1}^{2} h_{0jk}(x, y)^2 + \sum_{j=1}^{2} h_{1jk}(x, y)^2 x + \sum_{j=1}^{2} h_{2jk}(x, y)^2 (1-x) \right),
\]

\[
s_2(x, y) := \frac{\epsilon(x)}{5}(2 + y + 3y^2 + y^3 + 3y^4 + \cdots + y^{2d-1} + 2y^{2d}) + \sum_{i=0}^{2d} b_i(x) y^i.
\]

\[
s_3(x, y) := \epsilon(x)[(1 + y^2)^d - \frac{2}{5}(2 + y + 3y^2 + y^3 + 3y^4 + \cdots + y^{2d-1} + 2y^{2d})].
\]

Let \(T\) denote the preordering of \(\mathbb{R}[x, y]\) generated by \(x(1-x)\). As pointed out earlier, \(x, 1-x \in T\). Clearly \(s_1(x, y) \in T\). The argument in [3, Th. 5.1] shows that

\footnote{Applying Lemma 4.4 we can choose the \(g_{ij}(r)\) so that \(g_{2j}(r) = 0, j = 1, 2, \text{if } r = 0; g_{1j}(r) = 0, j = 1, 2, \text{if } r = 1; \text{and } g_{1j}(r) = g_{2j}(r) = 0, j = 1, 2, \text{if } 0 < r < 1.}
$s_2(x, y) \in T$. In more detail, since $|b_i(x)| \leq \frac{2}{5} \epsilon(x)$ on $[0, 1]$, \(\frac{2}{5} \epsilon(x) \pm b_i(x) \in T \), by [3 Th. 2.2] or [4 Prop. 2.7.3], for $i = 0, \ldots, 2d$. This yields

\[(5.1) \quad \frac{2}{5} \epsilon(x)y^i + b_i(x)y^i \in T, \quad \text{for } i \text{ even.}
\]

For i odd, say $i = 2m + 1$, the identity $y^{2m+1} = \frac{2}{5}y^{2m}(y+1)^2 - y^2 - 1$ plus the fact that $\frac{2}{5} \epsilon(x)y^{2m}(y+1)^2 + b_i(x)y^{2m}(y+1)^2$, $\frac{2}{5} \epsilon(x)y^{2m}y - b_i(x)y^{2m}y^2$ and $\frac{2}{5} \epsilon(x)y^{2m} - b_i(x)y^{2m}$ all belong to T to obtain

\[(5.2) \quad \frac{2}{5} \epsilon(x)(y^{i+1} + y^i + y^{i-1}) + b_i(x)y^i \in T, \quad \text{for } i \text{ odd.}
\]

Adding together the various terms of type (5.1) and (5.2), for $i = 0, \ldots, 2d$, we see that $s_2(x, y) \in T$. The fact that $s_3(x, y)$ belongs to T follows from the identity

\[
(1 + y^2)^d - \frac{2}{5}(2 + y + 3y^2 + y^3 + 3y^4 + \cdots + y^{2d-1} + 2y^{2d})
\]

\[
= (1 + y^2)^d + \frac{1}{5}(1 + y^2 + \cdots + y^{2d-2})(1 - y)^2
\]

\[
- \frac{8}{5}(y^2 + y^4 + \cdots + y^{2d-2}) - (1 + y^{2d})
\]

\[
= \frac{1}{5}(1 + y^2 + \cdots + y^{2d-2})(1 - y)^2 + \sum_{i=1}^{d-1} \binom{d}{i} - \frac{8}{5}y^{2i}.
\]

This means, finally, that $f(x, y) = s_1(x, y) + s_2(x, y) + s_3(x, y) \in T$. \hfill \Box

\begin{thebibliography}{10}

\end{thebibliography}

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SASKATCHEWAN, 106 WIGGINS
ROAD, SASKATOON, SK, CANADA, S7N 5E6
E-mail address: marshall@math.usask.ca