Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane


Authors: Ildefonso Castro and Ana M. Lerma
Journal: Proc. Amer. Math. Soc. 138 (2010), 1821-1832
MSC (2010): Primary 53C42, 53B25; Secondary 53D12
DOI: https://doi.org/10.1090/S0002-9939-09-10134-X
Published electronically: December 30, 2009
MathSciNet review: 2587467
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all Hamiltonian stationary Lagrangian surfaces in the complex Euclidean plane which are self-similar solutions of the mean curvature flow.


References [Enhancements On Off] (What's this?)

  • 1. H. Anciaux.
    Construction of Lagrangian self-similar solutions to the mean curvature flow in $ \mathbb{C}^n$.
    Geom. Dedicata 120 (2006) 37-48. MR 2252892 (2007h:53098)
  • 2. H. Anciaux and I. Castro.
    Constructions of Hamiltonian-minimal Lagrangian submanifolds in complex Euclidean space.
    Preprint, 2009. arXiv:0906.4305 [math.DG]
  • 3. I. Castro and B.-Y. Chen.
    Lagrangian surfaces in complex Euclidean plane via spherical and hyperbolic curves.
    Tohoku Math. J. (2) 58 (2006) 565-579. MR 2297200 (2009h:53182)
  • 4. I. Castro and F. Urbano.
    Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form.
    Tohoku Math. J. (2) 45 (1993) 565-582. MR 1245723 (94j:53064)
  • 5. I. Castro and F. Urbano.
    Examples of unstable Hamiltonian-minimal Lagrangian tori in $ \mathbb{C}^2$.
    Compositio Math. 111 (1998) 1-14. MR 1611051 (98m:53075)
  • 6. J. Chen and J. Li.
    Singularity of mean curvature flow of Lagrangian submanifolds.
    Invent. Math. 156 (2004) 25-51. MR 2047657 (2004m:53116)
  • 7. K. Groh, M. Schwarz, K. Smoczyk and K. Zehmisch.
    Mean curvature flow of monotone Lagrangian submanifolds.
    Math. Z. 257 (2007) 295-327. MR 2324804 (2008f:53090)
  • 8. R. Harvey and H.B. Lawson.
    Calibrated geometries.
    Acta Math. 148 (1982) 47-157. MR 666108 (85i:53058)
  • 9. F. Hélein and P. Romon.
    Hamiltonian stationary Lagrangian surfaces in $ \mathbb{C}^2$.
    Comm. Anal. Geom. 10 (2002) 79-126. MR 1894142 (2003e:53108)
  • 10. G. Huisken.
    Asymptotic behavior for singularities of the mean curvature flow.
    J. Differential Geom. 31 (1990) 285-299. MR 1030675 (90m:53016)
  • 11. D. Joyce, Y.-I. Lee and M.-P. Tsui.
    Self-similar solutions and translating solutions for Lagrangian mean curvature flow.
    arXiv:0801.3721 [math.DG]
  • 12. Y.-I. Lee and M.-T. Wang.
    Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows.
    in J. Differential Geom. 83 (2009), 27-42.
  • 13. Y.-I. Lee and M.-T. Wang.
    Hamiltonian stationary cones and self-similar solutions in higher dimension.
    Trans. Amer. Math. Soc. 362 (2010) 1491-1503.
  • 14. W.P. Minicozzi II.
    The Willmore functional on Lagrangian tori: Its relation to area and existence of smooth minimizers.
    J. Amer. Math. Soc. 8 (1995) 761-791. MR 1311825 (95m:58038)
  • 15. A. Neves.
    Singularities of Lagrangian mean curvature flow: Zero-Maslov class case.
    Invent. Math. 168 (2007) 449-484. MR 2299559 (2008d:53092)
  • 16. A. Neves.
    Singularities of Lagrangian mean curvature flow: monotone case.
    arXiv:math06068401v1 [math.DG], 2006.
  • 17. Y.G. Oh.
    Volume minimization of Lagrangian submanifolds under Hamiltonian deformations.
    Math. Z. 212 (1993) 175-192. MR 1202805 (94a:58040)
  • 18. K. Smoczyk.
    A canonical way to deform a Lagrangian submanifold. Preprint, dg-ga/9605005.
  • 19. R. Schoen and J.G. Wolfson.
    Minimizing area among Lagrangian surfaces: The mapping problem.
    J. Differential Geom. 57 (2001) 301-388. MR 1895348 (2003c:53119)
  • 20. A. Strominger, S.-T. Yau and E. Zaslow.
    Mirror symmetry is T-duality.
    Nuclear Phys. B479 (1996) 243-259. MR 1429831 (97j:32022)
  • 21. R.P. Thomas and S.-T. Yau.
    Special Lagrangians, stable bundles and mean curvature flow.
    Comm. Anal. Geom. 10 (2002) 1075-1113. MR 1957663 (2004c:53073)
  • 22. M.-T. Wang.
    Mean curvature flow of surfaces in Einstein four-manifolds.
    J. Differential Geom. 58 (2001) 1-86. MR 1879229 (2003j:53108)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C42, 53B25, 53D12

Retrieve articles in all journals with MSC (2010): 53C42, 53B25, 53D12


Additional Information

Ildefonso Castro
Affiliation: Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain
Email: icastro@ujaen.es

Ana M. Lerma
Affiliation: Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain
Email: alerma@ujaen.es

DOI: https://doi.org/10.1090/S0002-9939-09-10134-X
Keywords: Mean curvature flow, self-similar solutions, Hamiltonian stationary Lagrangian surfaces.
Received by editor(s): June 17, 2009
Received by editor(s) in revised form: July 27, 2009
Published electronically: December 30, 2009
Additional Notes: This research was partially supported by MEC-Feder grant MTM2007-61775
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society