Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Products of Toeplitz operators on the harmonic Bergman space


Authors: Xing-Tang Dong and Ze-Hua Zhou
Journal: Proc. Amer. Math. Soc. 138 (2010), 1765-1773
MSC (2010): Primary 47B35; Secondary 47B38
DOI: https://doi.org/10.1090/S0002-9939-09-10204-6
Published electronically: December 16, 2009
MathSciNet review: 2587461
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we first discuss some basic results concerning Toeplitz operators with quasihomogeneous symbols (i.e., symbols being of the form $ e^{ip\theta}\varphi $, where $ \varphi $ is a radial function) on the harmonic Bergman space. Then we determine when the product of two Toeplitz operators with quasihomogeneous symbols is a Toeplitz operator.


References [Enhancements On Off] (What's this?)

  • 1. P. Ahern and Ž. Čučković, A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal. 187 (2001), 200-210. MR 1867348 (2002h:47040)
  • 2. A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102. MR 0160136 (28:3350)
  • 3. B.R. Choe and Y.J. Lee, Commuting Toeplitz operators on the harmonic Bergman spaces, Michigan Math. J. 46 (1999), 163-174. MR 1682896 (2000a:47054)
  • 4. Ž. Čučković and N.V. Rao, Mellin transform, monomial symbols, and commuting Toeplitz operators, J. Funct. Anal. 154 (1998), 195-214. MR 1616532 (99f:47033)
  • 5. X.T. Dong and Z.H. Zhou, Algebraic properties of Toeplitz operators with separately quasi- homogeneous symbols on the Bergman space of the unit ball, J. Operator Theory, to appear.
  • 6. I. Louhichi, E. Strouse and L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integral Equations Operator Theory 54 (2006), 525-539. MR 2222982 (2007a:47033)
  • 7. I. Louhichi and L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math. 85 (2005), 248-257. MR 2172383 (2006e:47061)
  • 8. R. Remmert, Classical Topics in Complex Function Theory. Graduate Texts in Methematics, 172, Springer, New York, 1998. MR 1483074 (98g:30002)
  • 9. L. Zakariasy, The rank of Hankel operators on harmonic Bergman spaces, Proc. Amer. Math. Soc. 131 (2003), 1177-1180. MR 1948109 (2003k:47038)
  • 10. Z.H. Zhou and X.T. Dong, Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball, Integral Equations Operator Theory 64 (2009), 137-154. MR 2501175
  • 11. N. Zorboska, The Berezin transform and radial operators, Proc. Amer. Math. Soc. 131 (2003), 793-800. MR 1937440 (2003h:47064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B35, 47B38

Retrieve articles in all journals with MSC (2010): 47B35, 47B38


Additional Information

Xing-Tang Dong
Affiliation: Department of Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
Email: dongxingtang@163.com

Ze-Hua Zhou
Affiliation: Department of Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
Email: zehuazhou2003@yahoo.com.cn

DOI: https://doi.org/10.1090/S0002-9939-09-10204-6
Keywords: Toeplitz operators, harmonic Bergman space, quasihomogeneous symbols
Received by editor(s): June 30, 2009
Received by editor(s) in revised form: September 7, 2009
Published electronically: December 16, 2009
Additional Notes: The second author was supported in part by the National Natural Science Foundation of China (Grant Nos. 10971153, 10671141).
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society