INTEGRATION ON \(p \)-ADIC GROUPS AND CRYSTAL BASES

DANIEL BUMP AND MAKI NAKASUJI

(Communicated by Wen-Ching Winnie Li)

Abstract. Let \(G = \text{GL}_{r+1} \) over a nonarchimedean local field \(F \). The Kashiwara crystal \(B(\infty) \) is the quantized enveloping algebra of the lower triangular maximal unipotent subgroup \(N_- \). Examples are given where an integral over \(N_-(F) \) may be replaced by a sum over \(B(\infty) \). Thus the Gindikin-Karpelevich formula evaluates the integral of the standard spherical vector in the induced model of a principal series representation as a product
\[
\prod (1 - q^{-1}z^\alpha)/(1 - z^\alpha)
\]
where \(z \) is the Langlands parameter and the product is over positive roots. This may also be expressed as a sum over \(B(\infty) \). The corresponding equivalence over a metaplectic cover of \(\text{GL}_{r+1} \) is deduced by using Kashiwara’s similarity of crystals.

1. Introduction

Kashiwara defined the notion of a \(\text{crystal} \) and gave examples of crystal structures associated with bases of representations of quantum groups. We recommend the expository article [7], written a few years after the original papers, and the book of Hong and Kang [5].

One particular crystal defined by Kashiwara is denoted by \(B(\infty) \). It is a basis of the quantized universal enveloping algebra \(U_q(n_-) \) where \(n_- \) is the Lie algebra of the maximal unipotent subgroup \(N_- \) of a reductive algebraic group \(G \) or more generally its \(n \)-fold metaplectic cover. Our basic philosophy is that an integral over \(N_-(F) \) where \(F \) is a nonarchimedean local field can sometimes be replaced by a sum over \(B(\infty) \). We will demonstrate this for \(G = \text{GL}_{r+1} \), and later for the \(n \)-fold metaplectic cover. In this introduction we will consider the “nonmetaplectic case” where \(n = 1 \).

Let \(L \rightarrow G = \text{GL}_{r+1}(\mathbb{C}) \) be the (connected) Langlands dual group. Then the diagonal group \(T(\mathbb{C}) \) in \(L \) has character group \(\Lambda = X^*(T) \cong \mathbb{Z}^{r+1} \), and we may identify this with the full weight lattice.

If \(z = \text{diag}(z_1, \ldots, z_{r+1}) \in T(\mathbb{C}) \) where \(z_i \in \mathbb{C}^\times \), then in this identification \(\mu \in \mathbb{Z}^{r+1} \) is the character \(\mu \mapsto z^\mu = \prod z_i^{\mu_i} \). The simple positive roots are \(\alpha_i = (0, \ldots, 0, 1, -1, 0, \ldots, 0) \) where the 1 is in the \(i \)-th place. The dominant weights are \(\lambda = (\lambda_1, \ldots, \lambda_{r+1}) \) such that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{r+1} \). If all \(\lambda_i \geq 0 \), then we call a weight \(\lambda \) effective. Thus an effective dominant weight is a partition. We will write \(\rho = (r, r-1, \ldots, 2, 1, 0) \). It differs from half of the positive roots by a vector orthogonal to the roots, so it may substitute for \(\frac{1}{2} \sum \alpha \) in many formulas, such as the Weyl character formula.

Received by the editors August 12, 2009.

2010 Mathematics Subject Classification. Primary 17B37; Secondary 22E35, 11F85.

©2009 American Mathematical Society
Reverts to public domain 28 years from publication

1595
The conjugacy class in L^G parametrizes a spherical representation of $G(F)$. The induced model of this representation acts on the space of smooth functions f on G that satisfy $f(bg) = \delta^{1/2} \chi(b)f(g)$, where b lies in the Borel subgroup $B(F)$ of upper triangular matrices, δ is the modular quasicharacter on $B(F)$ and χ is the quasicharacter of $B(F)$ defined by

$$
\chi = \begin{pmatrix}
y_1 & * & \cdots & *
y_2 & & \cdots & *
& \ddots & & \vdots
y_{r+1} & & & 1
\end{pmatrix} = \prod_{i=1}^{r+1} z_i^{\alpha_i(y_i)}.
$$

Various integrals that we write down will be convergent if $|z_i/z_{i+1}| < 1$, and we will assume this. Let \mathfrak{o} be the ring of integers in F and let q be the cardinality of the residue field. Let p be the prime ideal of \mathfrak{o} and ϖ be a prime element.

The standard spherical vector f° in this representation is the function such that $f^\circ(bk) = \delta^{1/2} \chi(b)$ when $b \in B(F)$ and $k \in K = GL_{r+1}(\mathfrak{o})$. We mention two important integrals that illustrate the principle we stated above. The first is the formula of Gindikin and Karpelevich, which asserts that

$$
\int_{N_-(F)} f^\circ(\mathfrak{n}) \, d\mathfrak{n} = \prod_{\alpha \in \Phi^+} \frac{1-q^{-1}z^\alpha}{1-z^\alpha}.
$$

The second is the formula of Casselman and Shalika.

The formula (1.1) was first proved by Langlands [10]. Another proof may be found in Casselman [2]. (The original paper of Gindikin and Karpelevich [4] is concerned with the archimedean case.) MacNamara [12] also gives a proof of a generalization of this formula, as well as the Casselman-Shalika formula, to metaplectic covers.

We will show that (1.1) may also be expressed as a sum over $B(\infty)$. This is striking since $B(\infty)$ is obtained from N_- by quantization. The work of MacNamara [12] may clarify this phenomenon by showing how to decompose $N_-(F)$ into cells parametrized by elements of $B(\infty)$.

The integral $\int_{N_-(F)} f(\mathfrak{n}) \psi(\mathfrak{n}) \, d\mathfrak{n}$, where ψ is a nondegenerate additive character of $N_-(F)$, is evaluated in the formula of Casselman and Shalika [3]. Making use of a formula of Tokuyama [14] this evaluation may be rewritten in terms of crystals. This was done by Brubaker, Bump and Friedberg [1]. We will describe a variant of their formula. The difference is that we will use the Kashiwara operators e_i where they use the f_i.

Let $\lambda \in \mathbb{Z}^{r+1}$. Define

$$
\psi_\lambda = \begin{pmatrix}
1
x_{2,1} & 1
\vdots & \ddots
x_{r+1,1} & \cdots & x_{r+1,r} & 1
\end{pmatrix} = \psi_0(\varpi^{\lambda_1-\lambda_2 x_{r+1,r} + \cdots + \varpi^{\lambda_r-\lambda_{r+1}} x_{2,1}})
$$

where ψ_0 is a fixed additive character on F that is trivial on \mathfrak{o} but not on p^{-1}. The integral $\int_{N_-(F)} f(\mathfrak{n}) \psi_\lambda(\mathfrak{n}) \, d\mathfrak{n}$ is zero unless the weight λ is dominant, which we now assume.

In order to give the relevant definitions, we recall some facts and definitions about crystals. Let Φ be a root system, which in this paper will be mainly A_r. \[\text{...}\]
Let α_i ($i = 1, \cdots, r$) be the simple roots and α_i^\vee their associated coroots. Let Λ be the associated weight lattice. By a crystal for Φ we mean a set \mathcal{B} together with a map $\text{wt} : \mathcal{B} \to \Lambda$ and, for $1 \leq i \leq r$, maps $\phi_i, \varepsilon_i : \mathcal{B} \to \mathbb{Z} \cup \{-\infty\}$ and $f_i, e_i : \mathcal{B} \to \mathcal{B} \cup \{0\}$, where 0 is an auxiliary element. It is assumed that $\phi_i(v) = \langle \text{wt}(v), \alpha_i^\vee \rangle + \varepsilon_i(v)$. If $e_i(v) \neq 0$, then it is assumed that $f_i e_i(v) = v$ and that $\text{wt}(e_i(v)) = \text{wt}(v) + \alpha_i$, and if $f_i(v) \neq 0$, then it is assumed that $e_i f_i(v) = v$ and that $\text{wt}(f_i(v)) = \text{wt}(v) - \alpha_i$.

In Kashiwara’s papers the maps we have denoted by e_i and f_i are denoted by \tilde{e}_i and \tilde{f}_i, because the letters e_i and f_i were already in use with a different meaning.

One may impose on \mathcal{B} the structure of a directed graph with labeled edges, called the crystal graph, in which elements are vertices and there is an edge $x \xrightarrow{i} y$ if $f_i(x) = y$. Examples of crystal graphs may be seen in Figure 1 in the next section.

If \mathcal{C} and \mathcal{D} are crystals, a morphism $m : \mathcal{C} \to \mathcal{D}$ is a map $\mathcal{C} \to \mathcal{D} \cup \{0\}$ such that if $x \in \mathcal{C}$ and $m(x) \neq 0$, then $\text{wt}(m(x)) = \text{wt}(x)$, $\varepsilon_i(m(x)) = \varepsilon_i(x)$ and $\phi_i(m(x)) = \phi_i(x)$, and if $x, y \in \mathcal{C}$ and $m(x), m(y) \neq 0$, then $e_i(x) = y$ if and only if $e_i(m(x)) = m(y)$ and $f_i(y) = x$ if and only if $f_i(m(y)) = m(x)$. Crystals form a category.

Let G be a complex analytic group and T a maximal torus such that Φ is the root system of G with respect to T. Assuming that the derived group of G is simply connected, we may identify Λ with the group $X^*(T)$ of rational characters of T. A crystal \mathcal{B}_λ is defined with the property that

$$\sum_{v \in \mathcal{B}_\lambda} z^{\text{wt}(v)}$$

$(z \in T)$ is the character of the highest weight module V_λ for λ.

By a long word Ω we mean a reduced expression of the long element w_0 of W as a product of simple reflections. Thus

$$\Omega = (\omega_1, \omega_2, \cdots, \omega_N)$$

where N is the number of positive roots ($N = \frac{1}{2}r(r + 1)$ for $\Phi = A_r$) and $\omega_j \in \{1, 2, \cdots, r\}$ are such that $w_0 = s_{\omega_1} \cdots s_{\omega_N}$. Let $v \in \mathcal{B}_\lambda$. Let b_1 (depending on v and Ω) be the largest integer such that $e_{\omega_1}^{b_1} v \neq 0$. Let b_2 be the largest integer such that $e_{\omega_2}^{b_2} e_{\omega_1}^{b_1} v \neq 0$, and so forth. It is known (see Littelmann [1]) that $e_{\omega_N}^{b_N} \cdots e_{\omega_2}^{b_2} e_{\omega_1}^{b_1} v$ is the unique element v_{high} of \mathcal{B}_λ with $\text{wt}(v_{\text{high}}) = \lambda$, the highest weight.

We decorate the pattern

$$(1.2) \quad \text{BZL}(v) = (b_1, \cdots, b_N)$$

by “circling” or “boxing” certain entries. We will describe the boxing rule for all Ω, but we will describe the circling rule only for $\Omega = \Omega_\Gamma$ or $\Omega = \Omega_\Delta$ where

$$\Omega_\Gamma = (1, 2, 1, 3, 2, 1, \cdots, r, r - 1, \cdots, 3, 2, 1),$$

$$\Omega_\Delta = (r, r - 1, r, r - 2, r - 1, r, \cdots, 1, 2, 3, \cdots, r).$$
If $f_\omega e_{\omega_i-1} \cdots e_{\omega_1} v = 0$, then we decorate b_1 by boxing it. In the case where $\Omega = \Omega_{T}$ or Ω_{Δ} it was proved by Littelmann \[1\] that

\[
\begin{align*}
b_1 & \geq 0, \\
b_2 & \geq b_3 \geq 0, \\
b_4 & \geq b_5 \geq b_6 \geq 0,
\end{align*}
\]

(1.3)

If $b_1 = 0$, then we decorate b_1 by circling it. If $b_2 = b_3$, then we decorate b_2 by circling it. If $b_3 = 0$, then we decorate b_1 by circling it, and so forth.

Now let us recall from \[1\] the definition

\[
G_\Omega(v) = G_\Omega^{(e)}(v) = \prod_{i=1}^{N} \begin{cases}
h(b_i) & \text{if } b_i \text{ is neither circled nor boxed,} \\
g(b_i) & \text{if } b_i \text{ is boxed but not circled,} \\
q^{b_i} & \text{if } b_i \text{ is circled but not boxed,} \\
0 & \text{if } b_i \text{ is both circled and boxed.} \end{cases}
\]

(1.4)

In \[1\] (and in the final section below), h and g are n-th order Gauss sums, where n is an integer prime to the residue characteristic such that the ground field contains the n-th roots of unity. In the case at hand, $n = 1$ and g and h can be made explicit:

\[
g(a) = -q^{a-1}, \quad h(a) = (q-1)q^{a-1}.
\]

(1.5)

We may also dualize these definitions by interchanging the roles of the e_i and f_i. Thus we would alternatively let b_1 be the largest integer such that $f_{\omega_1}^{b_1} v \neq 0$. Let b_2 then be the largest integer such that $f_{\omega_2}^{b_2} f_{\omega_1}^{b_1} v \neq 0$, and so forth. It is known (see Littelmann \[1\]) that $f_{\omega_N}^{b_N} \cdots f_{\omega_2}^{b_2} f_{\omega_1}^{b_1} v$ is the unique element v_{\min} of B_λ with $
olimits \wt(v_{\min}) = w_0 \lambda$, the lowest weight. In this scheme, we box b_i if $e_{\omega_i} f_{\omega_i-1}^{b_i-1} \cdots f_{\omega_1}^{b_1} v = 0$. The inequalities (1.3) are again satisfied, and as before, if $b_1 = 0$, then we decorate b_1 by circling it, and so forth. Then we may define

\[
G_\Omega^{(f)}(v) = \prod_{i=1}^{N} \begin{cases}
h(b_i) & \text{if } b_i \text{ is neither circled nor boxed,} \\
g(b_i) & \text{if } b_i \text{ is boxed but not circled,} \\
q^{b_i} & \text{if } b_i \text{ is circled but not boxed,} \\
0 & \text{if } b_i \text{ is both circled and boxed.} \end{cases}
\]

We can make exactly the same definitions for $v \in B(\infty)$. However, only the definition of $G_\Omega^{(e)}(v)$ makes sense, since there is no largest integer such that $f_{\omega_1}^{b_1} v \neq 0$. Indeed, if $v \in B(\infty)$, then $f_{\omega_i}^{k} v \neq 0$ for all k. Therefore we may define $G_\Omega^{(e)}(v)$ but not $G_\Omega^{(f)}(v)$. Also circling can occur but not boxing; indeed $f_{\omega_i} e_{\omega_i-1} \cdots e_{\omega_1} v \neq 0$ for the same reason.

If λ is any weight, there is a crystal T_λ having one element t_λ with weight λ. It has the properties that $e_i(t_\lambda) = f_i(t_\lambda) = 0$ and $\phi_i(t_\lambda) = \varepsilon_i(t_\lambda) = -\infty$. We have $T_\lambda \otimes T_\mu \cong T_{\lambda + \mu}$. Tensoring any crystal B with T_λ produces a crystal that is isomorphic to B as a directed graph but in which the weights are shifted: $\wt(x \otimes t_\lambda) = \wt(x) + \lambda$ for $x \in B$.

If λ is a dominant weight, let χ_λ be the irreducible character of $L G = GL_{r+1}(\mathbb{C})$ with highest weight λ.
Theorem 1.1. If λ is a dominant weight and $\Omega = \Omega_\epsilon$ or Ω_Δ, then
\[
\int_{N_-(F)} f^\sigma(n) \psi_\lambda(n) \, dn = \prod_{\alpha \in \Phi^+} (1 - q^{-1}z^\alpha) \chi_\lambda(z)
\]
\[= \sum_{B_{\lambda+\rho} \otimes T_{-\lambda+\rho}} G_\Omega(v) q^{-(w_0(\wt(v)), \rho)} z^{w_0(\wt(v))}.
\]

The first equality is the Casselman-Shalika formula. We will also rewrite the formula of Gindikin and Karpelevich in the following similar way.

Theorem 1.2. We have
\[
\int_{N_-(F)} f^\sigma(n) \, dn = \prod_{\alpha \in \Phi^+} \frac{1 - q^{-1}z^\alpha}{1 - z^\alpha} = \sum_{\mathcal{B}(\infty)} G_\Omega(v) q^{(\wt(v), \rho)} z^{-\wt(v)}.
\]

In fact in both these theorems, the final sum may be written as a sum over $B(\infty)$. Indeed, there is a morphism $M_{\lambda+\rho} : B(\infty) \rightarrow B_{\lambda+\rho} \otimes T_{-\lambda+\rho}$ due to Kashiwara (see [7], Theorem 8.1), which we will make use of in the next section, and the sum over $B_{\lambda+\rho} \otimes T_{-\lambda+\rho}$ may therefore be interpreted as a sum over $B(\infty)$, with only finitely many nonzero terms (those that do not map to zero in the morphism).

Thus both theorems illustrate the philosophy that we can sometimes replace integrals over $N_-(F)$ by sums over $B(\infty)$, which is a basis of the quantized enveloping algebra of $N_-(F)$.

We would like to thank Ben Brubaker and Solomon Friedberg for helpful conversations. This work was supported in part by a JSPS Research Fellowship for Young Scientists and by NSF grant DMS-0652817.

2. Proofs of the theorems

The paper of Hong and Lee [6] describes $B(\infty)$ in explicit terms by means of tableaux. We will not review their work here, but it was useful in the preparation of this paper.

We have already mentioned the crystal T_λ having just one element t_λ of weight λ, such that $\epsilon_i(t_\lambda) = f_i(t_\lambda) = 0$ and $\phi_i(t_\lambda) = \epsilon_i(t_\lambda) = -\infty$. There is a morphism $M_\lambda : B(\infty) \rightarrow B_\lambda \otimes T_{-\lambda}$ that was introduced by Kashiwara (see [7], Theorem 8.1), which we will make use of. Let u_0 and b_λ be the highest weight vectors in $B(\infty)$ and B_λ, so $\wt(u_0) = 0$ and $\wt(b_\lambda) = \lambda$. The morphism maps u_0 to $b_\lambda \otimes t_{-\lambda}$. It maps all but a finite number of elements to 0. Those elements u of $B(\infty)$ that do not map to zero form a directed subgraph of the crystal graph of $B(\infty)$ that is a copy of B_λ as a colored directed graph. To illustrate this morphism, Figure 1 shows B_λ (using Kashiwara’s notation for the crystal elements as tableaux) in the case where $\lambda = (2, 1, 0)$; tensoring this with $T_{-\lambda}$ so that the highest weight vector has weight 0, this is embedded in $B(\infty)$, where the labeling is a modification of the notation in Hong and Lee [6]. (From the partial tableaux in Figure 1 one obtains representatives of the crystal T_∞ in [6] by adding sufficiently many 1’s at the beginning of the first row, 2’s at the beginning of the second row, etc.)

We will prove Theorem 1.1. If ψ_λ is an additive character of $N_-(F)$ as defined in the introduction, the Casselman-Shalika formula for GL_{r+1} is written as follows:
\[
\int_{N_-(F)} f^\sigma(n) \psi_\lambda(n) \, dn = z^{-w_0(\lambda)} \left[\prod_{\alpha \in \Phi^+} (1 - q^{-1}z^\alpha) \right] s_\lambda(z_1, \ldots, z_{r+1}),
\]
where the integral is absolutely convergent if $|z^\alpha| < 1$, and $s_\lambda(z_1, \ldots, z_r)$ is the standard Schur polynomial.

On the other hand, Brubaker, Bump and Friedberg show the following Tokuyama deformation of the Weyl character formula for crystals.

Theorem 2.1 ([1], Theorem 5). If λ is a dominant weight and if z_1, \ldots, z_{r+1} are the eigenvalues of $g \in \text{GL}_{r+1}(\mathbb{C})$, then

$$\prod_{\alpha \in \Phi^+} (1 - q^{-1}z^\alpha) \chi_\lambda(g) = \sum_{v \in \mathcal{B}_{\rho+\lambda}} G^{(f)}_{\text{th}}(v) q^{-(\text{wt}(v) - w_0(\lambda + \rho), \rho)} z^{\text{wt}(v) - w_0(\rho)} ,$$

where χ_λ is the character of the irreducible representation with highest weight λ. When z_i are the eigenvalues of $g \in \text{GL}_{r+1}(\mathbb{C})$, we have $s_\lambda(z_1, \ldots, z_{r+1}) = \chi_\lambda(g)$. Therefore, by this theorem, the integral $\int_{N_-(F)} f^\sigma(n) \psi_\lambda(n) dn$ in the formula of Casselman and Shalika is evaluated in terms of crystal graphs ([1], (3.7)):

$$(2.1) \quad \int_{N_-(F)} f^\sigma(n) \psi_\lambda(n) dn = \sum_{v \in \mathcal{B}_{\rho+\lambda}} G^{(f)}_{\text{th}}(v) q^{-(\text{wt}(v) - w_0(\lambda + \rho), \rho)} z^{\text{wt}(v) - w_0(\rho + \lambda)} .$$

Now we will replace the right hand side by an expression involving $G^{(c)}_{\text{th}}$. The following equivalence of two descriptions is obtained in [1].

Theorem 2.2 ([1], Statement A').

$$\sum_{v \in \mathcal{B}_{\rho+\lambda}} G^{(f)}_{\Omega_\lambda}(v) = \sum_{v \in \mathcal{B}_{\rho+\lambda}} G^{(f)}_{\Omega_\Delta}(v) .$$

By this theorem, the right hand side of (2.1) is written as

$$\sum_{v \in \mathcal{B}_{\rho+\lambda}} G^{(f)}_{\Omega_\Delta}(v) q^{-(\text{wt}(v) - w_0(\lambda + \rho), \rho)} z^{\text{wt}(v) - w_0(\rho + \lambda)} .$$

There is a map $\text{Sch} : \mathcal{B}_{\rho+\lambda} \to \mathcal{B}_{\rho+\lambda}$ called the Schützenberger involution such that $\text{Sch} \circ e_i = f_{r+1-i} \circ \text{Sch}$ and $\text{Sch} \circ f_i = e_{r+1-i} \circ \text{Sch}$. Let $v' = \text{Sch}(v)$ for $v \in \mathcal{B}_{\rho+\lambda}$.

Figure 1. The crystal $\mathcal{B}_{\lambda} \otimes \mathcal{T}_-\lambda$, with $\lambda = (2, 1, 0)$, and its image in $\mathcal{B}(\infty)$.
Since \(wt(v') = w_0 wt(v) \) and \(G^{(f)}_{\Omega^\varepsilon}(v) = G^{(c)}_{\Omega^\varepsilon}(\text{Sch}(v)) = G^{(c)}_{\Omega^\varepsilon}(v') \), the right hand side of (2.1) becomes
\[
\sum_{v' \in \mathcal{B}_{\rho}^{\lambda,\mu}} G^{(c)}_{\Omega^\varepsilon}(v') q^{-\langle w_0(wt(v') - \rho - \lambda), \rho \rangle} z^{w_0(wt(v') - \rho - \lambda)}.
\]
Let \(v'' := v' \circ t_{-\lambda - \rho} \) with \(v' \in \mathcal{B}_{\lambda + \rho} \) and \(t_{-\lambda - \rho} \in T_{-\lambda - \rho} \). Since \(wt(v'') = wt(v') - \lambda - \rho \) and \(G^{(c)}_{\Omega^\varepsilon}(v'') = G^{(c)}_{\Omega^\varepsilon}(v') \), with the morphism \(M_{\lambda + \rho} : \mathcal{B}(\infty) \to \mathcal{B}_{\lambda + \rho} \otimes T_{-\lambda - \rho} \), we obtain
\[
\sum_{v'' \in \mathcal{B}_{\lambda + \rho} \otimes T_{-\lambda - \rho}} G^{(c)}_{\Omega^\varepsilon}(v'') q^{-\langle w_0(wt(v''), \rho) \rangle} z^{w_0(wt(v''))}.
\]
This proves Theorem 1.1.

In order to prove Theorem 1.2, we need to discuss the limiting argument first.

Given \(n \in N_-(F) \) we may write \(n = t n_+ k \) where \(t \in T, n_+ \in N \) and \(k \in \text{GL}_{r+1}(\mathfrak{o}) \). The element \(t \) is not uniquely determined but its image \(\bar{t} \) in \(T/T(\mathfrak{o}) \) is uniquely determined. The group \(T/T(\mathfrak{o}) \) is discrete, and \(v : T/T(\mathfrak{o}) \to \mathbb{Z}^{r+1} \) defined by
\[
v \left(\begin{array}{c}
t_1 \\
\vdots \\
t_{r+1}
\end{array} \right) = (\text{ord}(t_1), \ldots, \text{ord}(t_{r+1}))
\]
is an isomorphism. Define a map \(\beta : N_-(F) \to \mathbb{Z}^{r+1} \) by \(\beta(n) = v(\bar{t}) \).

Proposition 2.3. The map \(\beta \) is proper.

We recall that if \(X \) and \(Y \) are Hausdorff topological spaces, then a map \(f : X \to Y \) is proper if the inverse image of a compact set is compact. Since \(\mathbb{Z}^{r+1} \) is discrete, this means that the inverse image of a finite set is compact in \(N_-(F) \).

Proof. Write \(n = t n_+ k \) with \(t \in T, n_+ \in N \) and \(k \in K \). Let \(S \) be a subset of \(\{1, \ldots, r+1\} \) with \(k = |S| \). If \(A = (a_{ij}) \) is an \((r+1) \times (r+1) \) matrix, denote by \(M_S(A) \) the minor
\[
det(a_{i,j} \mid i \in \{r+2-k, r+3-k, \ldots, r+1\}, j \in S)
\]
formed with the bottom \(k \) rows of \(A \) and columns in \(j \). We call \(M_S(A) \) a bottom minor. Since \(n_+ \) is upper triangular and unipotent, \(M_S(n_+ k) = M_S(k) \), and since \(t \) is diagonal,
\[
M_S(n) = \left[\prod_{j=r+2-k}^{r+1} t_j \right] M_S(k).
\]
Since the entries in \(M_S(k) \) are in \(\mathfrak{o} \), this means that
\[
|M_S(n)| \leq \left| \prod_{j=r+2-k}^{r+1} t_j \right|.
\]
Now since \(n \) is lower triangular and unipotent it is easy to see that each entry \(n_{ij} \) in \(n \) (with \(i > j \)) equals \(M_S(n) \) where \(S = \{j, i+1, i+2, \ldots, r+1\} \). For example if \(r+1 = 4 \) and
\[
n = \left(\begin{array}{ccc}
1 & 1 & 1 \\
n_{21} & n_{31} & n_{32} \\
n_{41} & n_{42} & n_{43}
\end{array} \right),
\]
then \(n_{31} = M_S(n) \) where \(S = \{1,4\} \). It is now clear that if \(t \) is confined to a compact subset of \(T \), then the entries of \(n \) are bounded, and it follows that \(\beta \) is a proper map.

Let \(R = \mathbb{C}[q][[z^{\alpha_1}, \cdots, z^{\alpha_r}]] \) and \(P := \{ \sum k_i \alpha_i \mid 1 \leq i \leq r, k_i \geq 0 \} \). If \(v \in B_{\lambda+\rho} \), then \(\omega(v) - w_0(\lambda + \rho) \in P \). It follows from (2.1) that \(\int_{N_-(F)} f^\alpha(n) \psi(n) \, dn \in R \). Applying Proposition 2.3, we have the following result:

Proposition 2.4. \(\int_{N_-(F)} f^\alpha(n) \psi_\lambda(n) \, dn \) converges to \(\int_{N_-(F)} f^\alpha(n) \, dn \) in the topology of the ring \(R \) as \(\lambda \) goes to \(\infty \).

Proof. Let \(S \) be a finite subset of \(\Lambda \) contained in \(P \). By Proposition 2.3 there is a compact subset \(C \) of \(N_-(F) \) such that, for \(n \in N_-(F) - C \), \(\beta(n) = \sum k_i \alpha_i \notin S \). Assume \(\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \cdots > M \) for some integer \(M \). The difference \(\int_{N_-(F)} f^\alpha(n) \, dn - \int_{N_-(F)} f^\alpha(n) \psi_\lambda(n) \, dn \) is written in two parts:

\[
\int_C f^\alpha(n)(1 - \psi_\lambda(n)) \, dn + \int_{N_-(F) - C} f^\alpha(n)(1 - \psi_\lambda(n)) \, dn.
\]

Choose \(M \) so large that \(\psi_\lambda = 1 \) on \(C \). Then the first term vanishes. Let \(E_S \) be the additive subgroup of \(R \) consisting of \(\sum c_{k_1 \cdots k_r} (q) z^{k_1 \alpha_1 + \cdots + k_r \alpha_r} \) such that \(c_{k_1 \cdots k_r} (q) = 0 \) if \(\sum k_i \alpha_i \notin S \). These form a base of neighborhoods of the identity in \(R \). Since \(f^\alpha(n) \in R \), this means that the second term converges in \(R \). \(\square \)

We will prove Theorem 1.2.

When \(\lambda \) goes to \(\infty \), the limiting argument as above and Theorem 1.1 lead to

\[
\int_{N_-(F)} f^\alpha(n) \, dn = \sum_{v \in \mathcal{B}(\infty)} G^\alpha_{\Omega_1}(v) q^{\omega_0(\omega(v), \rho)} z^{\omega_0(\omega(v))}.
\]

There is a map \(\iota : \mathcal{B}_\lambda \to \mathcal{B}_{\omega_0(\lambda + \rho)} \) which satisfies \(\iota_\lambda \circ f_1 = f_{r+1-i} \circ \iota_\lambda \) and \(\iota_{\lambda + \rho} \circ e_{r+1-i} = e_i \circ \iota_{\lambda + \rho} \). There is a corresponding bijection \(\iota : \mathcal{B}(\infty) \to \mathcal{B}(\infty) \) such that

\[
\begin{array}{ccc}
\mathcal{B}(\infty) & \xleftarrow{\iota} & \mathcal{B}(\infty) \\
M_{\lambda+\rho} & \downarrow & M_{\omega_0(\lambda + \rho)} \\
\mathcal{B}_\lambda \otimes \mathcal{T}_{\lambda + \rho} & \xrightarrow{\iota_{\lambda + \rho}} & \mathcal{B}_{\omega_0(\lambda + \rho)} \otimes \mathcal{T}_{\omega_0(\lambda + \rho)}
\end{array}
\]

Let \(\tilde{v} = \iota(v) \) for \(v \in \mathcal{B}(\infty) \). Then since \(G^\alpha_{\Omega_1}(\tilde{v}) = G^\alpha_{\Omega_1}(v) \) and \(\omega(\tilde{v}) = -\omega_0(\omega(v)) \), we have

\[
\int_{N_-(F)} f^\alpha(n) \, dn = \sum_{\tilde{v} \in \mathcal{B}(\infty)} G^\alpha_{\Omega_1}(\tilde{v}) q^{\omega(\tilde{v}), \rho} z^{-\omega(\tilde{v})}.
\]

This concludes the proof of Theorem 1.2.

3. **The Metaplectic Case**

Finally, we give metaplectic analogs of these formulas. We assume that the ground field \(F \) has residue characteristic prime to \(n \) and contains the group \(\mu_n \) of \(n \)-th roots of unity in the algebraic closure of \(F \). We fix an isomorphism of \(\mu_n \) with the group of \(n \)-th roots of unity in \(\mathbb{C}^\times \). To avoid unnecessary minor complications we will take \(G = \text{SL}_{r+1} \) rather than \(\text{GL}_{r+1} \) in this section.
Let $\hat{G}(F)$ be the n-fold metaplectic cover of $\text{SL}_{r+1}(F)$, first constructed by Matsumoto [13], that splits over $K = \text{SL}_{r+1}(O)$. Let K^* be the image of K in $\hat{G}(F)$ under the splitting. It is a central extension

$$1 \rightarrow \mu_n \rightarrow \hat{G}(F) \rightarrow \text{SL}_{r+1}(F) \rightarrow 1.$$

We choose a section $s : \text{SL}_{r+1}(F) \rightarrow \hat{G}(F)$ and a cocycle $\sigma : \text{SL}_{r+1}(F) \times \text{SL}_{r+1}(F) \rightarrow \mu_n$ whose class in $H^2(\hat{G}(F), \mu_n)$ determines the extension so that, upon identifying μ_n with its image in $\hat{G}(F)$, we have $s(g)s(g') = \sigma(g, g')s(gg')$. We may choose s and σ so that

$$\sigma \left(s \left(\begin{array}{ccc} t_1 & \cdots & \cdot \\ \cdot & & \cdot \\ \cdot & & \cdots \\
 \cdot & & t_{r+1} \end{array} \right), s \left(\begin{array}{ccc} u_1 & \cdots & \cdot \\ \cdot & & \cdot \\ \cdot & & \cdots \\
 \cdot & & u_{r+1} \end{array} \right) \right) = \prod_{i<j} (t_i, u_j)^{-1},$$

where (t, u) is the n-th order Hilbert symbol, and so that $\sigma(n, g) = \sigma(g, n) = 1$ when n is in the group $N(F)$ of upper triangular unipotent matrices in $\text{SL}_{r+1}(F)$.

Identifying μ_n both with its image in $\hat{G}(F)$ and with its image in \mathbb{C}, we call a function $f : \hat{G}(F) \rightarrow \mathbb{C}$ genuine if $f(\varepsilon g) = \varepsilon f(g)$ for $\varepsilon \in \mu_n$. There exists a unique genuine function \tilde{f}° on $\hat{G}(F)$ that satisfies

$$\tilde{f}^\circ \left(s \left(\begin{array}{ccc} t_1 & \cdots & * \\ \cdots & & \cdots \\ * & \cdots & * \\
 \cdots & & t_{r+1} \end{array} \right) \right) k = \left\{ \begin{array}{ll} \prod z_i^{\text{ord}(t_i)} & \text{if } n|\text{ord}(t_i) \text{ for } 1 \leq i \leq r+1, \\
 0 & \text{otherwise,} \end{array} \right.$$

when $k \in K^*$. Let $i : N_-(F) \rightarrow \hat{G}(F)$ be the canonical splitting homomorphism, which satisfies $s(w_0)i(n)s(w_0)^{-1} = s(w_0\nu w_0^{-1})$ when $n \in N_-$, where w_0 is a representative of the long Weyl group element.

In the Introduction, G_{11} was defined for $n = 1$. In [1], the definition [13.4] is given for general n. It is the same, except that [13.5] is generalized. We make use of the n-th order Gauss sum defined, with ψ_0 as in the Introduction, by

$$g(m, c) = \sum_{d \mod c \atop \text{gcd}(d, c) = 1} (d, c)\psi_0 \left(\frac{md}{c} \right).$$

Then with ϖ a fixed prime element, we have $g(a) = g(\varpi^{a-1}, \varpi^a)$ and $h(a) = g(\varpi^a, \varpi^a)$. Since boxing does not occur for $B(\infty)$, the function h is most relevant here, and it can be made explicit, as

$$h(a) = \left\{ \begin{array}{ll} (q-1)q^{a-1} & \text{if } n|a, \\
 0 & \text{otherwise.} \end{array} \right.$$

We may now generalize Theorem [1.2] as follows.

Theorem 3.1. We have

$$\int_{N_-(F)} \tilde{f}^\circ(n) d\mu = \prod_{\alpha \in \Phi^+} \frac{1 - q^{-1}z^{n\alpha}}{1 - z^{n\alpha}} = \sum_{\mathcal{B}(\infty)} G_{11}(v)q^{\langle \text{wt}(v), \rho \rangle}z^{-\text{wt}(v)}.$$
Proof. The formula of Gindikin and Karpelevich in this context is
\[
\int_{\mathcal{N}_c(F)} \hat{f}^c(n) \, dn = \prod_{\alpha \in \Phi^+} \frac{1 - q^{-1}z_{\alpha}^{n\lambda}}{1 - z_{\alpha}^{n\lambda}},
\]
and it is the same as Proposition I.2.4 of Kazhdan and Patterson \[9\]. Another proof, closely related to our point of view in this paper, can be found in MacNamara \[12\].

We will prove the second equality. With \(v \in \mathcal{B}(\infty)\) and with \(b_i\) as in \[12\] we have \((\text{wt}(v),\rho) = -\sum b_i\). Thus
\[
\sum_{\mathcal{B}(\infty)} G_{\Omega}(v) q^{(\text{wt}(v),\rho)} z^{-\text{wt}(v)} = \sum_{\mathcal{B}(\infty)} G'_{\Omega}(v) z^{-\text{wt}(v)}
\]
where (since boxing does not occur for \(\mathcal{B}(\infty)\)) we have
\[
G'_{\Omega}(v) = \prod_{i=1}^{N} \begin{cases} q^{-b_i}h(b_i) & \text{if } b_i \text{ is not circled,} \\ 1 & \text{if } b_i \text{ is circled.} \end{cases}
\]

Using \[9\], \(G'_{\Omega}(v) = (1 - q^{-1})^{s(v)}\) where \(s(v)\) is the number of \(b_i\) that are not circled, provided that these uncircled \(b_i\) are all multiples of \(n\), while \(G'_{\Omega}(v) = 0\) if any \(b_i\) that is not circled is not a multiple of \(n\). Thus we must show that
\[
\prod_{\alpha \in \Phi^+} \frac{1 - q^{-1}z_{\alpha}^{n\lambda}}{1 - z_{\alpha}^{n\lambda}} = \sum_{\text{BZL}(v) = (b_1, \ldots, b_N)} (1 - q^{-1})^{s(v)} z^{-\text{wt}(v)}.
\]

Now we argue that this may actually be written as
\[
(3.3) \quad \prod_{\alpha \in \Phi^+} \frac{1 - q^{-1}z_{\alpha}^{n\lambda}}{1 - z_{\alpha}^{n\lambda}} = \sum_{\text{BZL}(v) = (b_1, \ldots, b_N)} (1 - q^{-1})^{s(v)} z^{-\text{wt}(v)}.
\]

Thus we claim that if \(n|b_i\) for all uncircled \(b_i\), then \(n\) divides all \(b_i\), whether circled or not. Indeed, if \(b_i\) is circled, then either it is zero (and hence a multiple of \(n\)) or \(b_i = b_{i+1}\). If \(b_{i+1}\) is circled, then \(n|b_{i+1}\), so \(n|b_i\), and the claim is proved; otherwise, we may repeat the argument. We have \(b_i = b_{i+1} = \ldots = b_j\) and the last \(b_j\) is uncircled, so \(n|b_j\) and therefore \(n|b_i\). (This observation also appears as the “Circling Lemma” in \[1\].) Thus we are reduced to proving \[3.3\].

Now Kashiwara \[8\] proved a similarity property of crystals: let \(\lambda\) be a dominant weight. Then there exists a similarity map, which we will denote by \(n : \mathcal{B}_\lambda \rightarrow \mathcal{B}_{n\lambda}\), such that \(\text{wt}(n \cdot v) = n \cdot \text{wt}(v)\) and \(f_{\alpha}^n(n \cdot v) = n \cdot (f_{\alpha} v)\). It follows from the description of \(\mathcal{B}(\infty)\) that there exists a corresponding similarity map \(n : \mathcal{B}(\infty) \rightarrow \mathcal{B}(\infty)\), and we may summarize what we have learned by saying that the right hand side of \[3.2\] is the sum over \(v\) in the image of the similarity map. Pulling the sum back to \(\mathcal{B}(\infty)\) through the similarity map, we may now apply Theorem \[12\] (with \(z^n\) replacing \(z\)), since that theorem proves \[8\] in the \(n = 1\) case. \(\square\)

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use