A CAUCHY-RIEMANN EQUATION FOR GENERALIZED ANALYTIC FUNCTIONS

JOHN WERMER

(Communicated by Franc Forstneric)

Abstract. We denote by T^2 the torus: $z = \exp i\theta, w = \exp i\phi$, and we fix a positive irrational number α. A_α denotes the space of continuous functions f on T^2 whose Fourier coefficient sequence is supported by the lattice half-plane $n + m\alpha \geq 0$. R. Arens and I. Singer introduced and studied the space A_α, and it turned out to be an interesting generalization of the disk algebra. Here we construct a differential operator X_Σ on a certain 3-manifold Σ_0 such that X_Σ characterizes A_α in a manner analogous to the characterization of the disk algebra by the Cauchy-Riemann equation in the disk.

1. Introduction

Let Γ be the unit circle. The disk algebra A on Γ is the space of all continuous functions f on Γ such that the Fourier expansion of f is:

$$\sum_{n=0}^{\infty} c_n \exp(in\theta);$$

i.e., the Fourier coefficient sequence of f is supported on the semi-group $n \geq 0$ of \mathbb{Z}.

In [1], R. Arens and I.M. Singer studied the following generalization of the disk algebra: we replace Γ by the 2-torus T^2 and fix a positive irrational number α. The dual group of T^2 is $\mathbb{Z} \oplus \mathbb{Z}$. We replace the semi-group of nonnegative integers by the semi-group of all pairs of integers (n,m) with $n + m\alpha \geq 0$. We define the algebra A_α as the space of continuous functions on T^2 with Fourier expansion on the torus given by

$$\sum_{n+m\alpha \geq 0} c_{nm} \exp(in\theta) \exp(im\phi).$$

A_α is called a space of Generalized Analytic Functions. In [4], H. Helson and D. Lowdenslager made a detailed study of A_α and showed that many basic results of analytic function theory on the unit disk extend from A to A_α.

An alternative description to the disk algebra is the following: A consists of those functions f continuous on Γ which admit a continuous extension to the closed disk Δ, again denoted by f, such that f is smooth on the interior of Δ and there it
satisfies the equation

\[\frac{\delta}{\delta \bar{z}} (f) = 0. \]

In [1] the disk \(\Delta \) is replaced by the maximal ideal space \(\Pi \) of the Banach algebra \(A_\alpha \), taken in the Gelfand topology. It is shown in [1] that \(\Pi \) has a natural identification with the following compact subset of \(C^2 \):

The set of all points \((z, w)\) in \(C^2 \) such that \(|w| = |z|^\alpha \) and \(|z| \leq 1 \).

We denote this subset of \(C^2 \) by \(\Sigma \). In this identification, \(T^2 \) turns into the set of all points \((z, w)\) in \(C^2 \) such that \(|z| = |w| = 1 \).

Our purpose is to give an equation analogous to (1) on the space \(\Sigma \setminus (T^2 \cup 0) \), which characterizes \(A_\alpha \). To this end we define the differential operator \(X \) on \(C^2 \) by \(X = i z \frac{\partial}{\partial z} + \alpha w \frac{\partial}{\partial w} \). As is shown below, \(X \) restricts to a well-defined differential operator on the smooth manifold: \(\Sigma \setminus T^2 \cup \{0\} \), which we denote by \(\Sigma_0 \).

Theorem 1.1. A function \(f \in \mathcal{C}(T^2) \) lies in \(A_\alpha \) if and only if \(f \) admits a continuous extension (denoted \(F \)) to \(\Sigma \) such that \(XF = 0 \), in the sense of distributions, on \(\Sigma \setminus (T^2 \cup 0) \).

Theorem 1.2. Given a point \((z_0, w_0) \in \Sigma \setminus (T^2 \cup 0) \), there exists some function \(f \in A_\alpha \) such that the extension \(F \) is not differentiable on \(\Sigma \) at that point.

2. **Proof of Theorem 1.1**

We put \(\Sigma_0 = \Sigma \setminus (T^2 \cup (0,0)) \).

Let \(\phi \) be the function on \(C^2 \setminus z = 0 \) given by \(\phi(z, w) = w\bar{w} - z^\alpha \bar{z}^\alpha \).

\(\Sigma \) has the equation: \(\phi(z, w) = 0 \). We write \(D_\bar{z} \) for the derivative with respect to \(\bar{z} \) and similarly for \(w \). \(X(\phi) = \alpha \phi \delta \) by direct calculation. So \(X(\phi) = 0 \) on \(\Sigma \).

Since \(\Sigma \) is given by the equation \(\phi = 0 \), it follows that the operator \(X \) is well-defined on \(\mathcal{C}_\infty(\Sigma) \). We denote this operator, which acts on functions defined on \(\Sigma \), by \(X_\Sigma \). We wish to express \(X_\Sigma \) in local coordinates on \(\Sigma \). Fix a point \((z_0, w_0) \) on \(\Sigma \). Then \(w_0 = z_0^\alpha \exp(i \theta_0) \) for some \(z_0, \theta_0 \) with \(|z_0| < 1, 0 \leq \theta_0 \leq 2\pi \). We define a neighborhood \(U \) of \((z_0, w_0) \) on \(\Sigma \) by:

\[U = \langle t, \exp(i \theta) t^\alpha, |t - z_0| < \delta, |\theta - \theta_0| < \delta \rangle. \]

We fix a single-valued branch of \(t^\alpha \) near \(t = z_0 \).

We use \(t, \bar{t}, \theta \) as local coordinates in \(U \). Further, we denote the operator \(\frac{\delta}{\delta \bar{z}} \) by \(D_{\bar{t}} \).

Claim 1. \(\bar{t} D_{\bar{t}} = X_\Sigma \) as a differential operator on \(U \). Hence for a continuous function \(f \) on \(U \), \(t D_{\bar{t}} f = X_\Sigma f \), as a distribution on \(U \).

Proof of Claim 1. We apply both sides to the functions \(t, \bar{t}, \exp(i \theta), \exp(-i \theta) \). We note that \(t \) is the restriction of \(\bar{z} \) to \(\Sigma \). Since \(X = z D_{\bar{z}} + \alpha \bar{w} D_{\bar{w}} \), \(X_\Sigma(t) = \bar{t} \) on \(U \).

Next, \(\bar{t} \) is the restriction of \(\bar{z} \) to \(\Sigma \). So \(X_\Sigma(\bar{t}) = 0 \). Next, \(X_\Sigma(\exp(i \theta)) = X(\frac{i \theta}{\alpha}) = 0 \). Similarly, \(X_\Sigma(\exp(-i \theta)) = 0 \). On the other hand, \(\bar{t} D_{\bar{t}}(\exp(i \theta)) = 0, \bar{t} D_{\bar{t}}(\exp(-i \theta)) = 0 \).

So \(X_\Sigma \) and \(\bar{t} D_{\bar{t}} \) agree on each of the functions \(t, \bar{t}, \exp i \theta \) on \(U \). Also, \(0 = X_\Sigma(\exp i \theta) = i \exp i \theta X_\Sigma(\theta) \), so \(X_\Sigma(\theta) = 0 \). Similarly, \(\bar{t} D_{\bar{t}}(\theta) = 0 \). It follows that for all \(G \) in \(\mathcal{C}_\infty(U) \) we have \(\bar{t} D_{\bar{t}}(G) = X_\Sigma(G) \). This proves our claim. \(\square \)
We next follow the Arens-Singer paper in introducing a foliation of the 3-manifold Σ_0 by a one-parameter family of Riemann surfaces Λ_θ. We shall prove

Theorem 2.1. Fix f in $C^\infty(\Sigma)$. Then $Xf = 0$ on Σ if and only if the restriction of f to Λ_θ is holomorphic on Λ_θ for each θ.

We denote by H^+ the right half-plane: $\Re \zeta > 0$. For each $\theta \in [0, 2\pi]$ we put $\chi_\theta(\zeta) = (\exp(\zeta), \exp i\theta \exp(-\alpha \zeta))$, where ζ is in the closed right half-plane.

Definition. Fix θ. Λ_θ is the image in C^2 of H^+ under the map χ_θ.

Since $|\exp i\theta \exp(-\alpha \zeta)| = |\exp(-\zeta)|^\alpha$, Λ_θ is a subset of Σ. The map χ_θ is one-one from H^+ to Λ_θ. We use this map to give Λ_θ the structure of a Riemann surface. We verify that for θ and θ' distinct points in $[0, 2\pi]$, the sets Λ_θ and $\Lambda_{\theta'}$ are disjoint.

For a function g defined on Λ_θ, we say that “g is holomorphic on Λ_θ” if the composition $\zeta \to g(\chi_\theta(\zeta))$ is holomorphic on H^+.

Now fix f in $C(\Sigma)$ with $Xf = 0$ on Σ. Fix θ_0. We must show that f, restricted to Λ_{θ_0}, is holomorphic on Λ_{θ_0}.

Let (z_0, w_0) be a point on Λ_{θ_0}. We fix a single-valued branch of the function z^α in a neighborhood $|z - z_0| < \delta$ and fix $\epsilon > 0$. Put $U_\epsilon = \{(z, z^\alpha \exp i\theta)| |z - z_0| < \delta, |\theta - \theta_0| < \epsilon\}$. Let D be the disk $\{(z, z^\alpha \exp i\theta_0), |z - z_0| < \delta\}$, so $D \subset \Lambda_\theta$.

Choose a test function ϕ in $C^\infty(D)$, and extend ϕ to a smooth function $\tilde{\phi}_\epsilon$ in $C^\infty_0(U_\epsilon)$.

Since $Xf = 0$, by hypothesis, $Xf = 0$ on U (where we suppress the subscript ϵ). So by Claim 1, $\langle D_i (f) \phi \rangle = 0$ as a distribution on U. Therefore, $D_i (f) = 0$ as a distribution on U. So $\langle D_i (f), \tilde{\phi}_\epsilon \rangle = - \int_D f D_i \tilde{\phi}_\epsilon = - \int_D dt \wedge d\bar{\omega} \int_{\theta_0 - \epsilon}^{\theta_0 + \epsilon} f(t, \exp i\theta \alpha) D_i \tilde{\phi}_\epsilon d\theta$.

Since $D_i (f) = 0$ on U, we get for each $\epsilon > 0$: $0 = \int_D dt d\bar{\omega} \int_{\theta_0 - \epsilon}^{\theta_0 + \epsilon} f(t, \exp i\theta \alpha) D_i \tilde{\phi}_\epsilon d\theta$, where the integrand of the inner integral is evaluated at $(t, \exp i\theta \alpha)$. As ϵ approaches zero, we get in the limit

$$0 = \int_D f(t, \exp i\theta_0 \alpha) D_i \phi(t, \exp i\theta_0 \alpha) dt \wedge d\bar{\omega} = \langle f, D_i \phi \rangle.$$

So $D_i (f) = 0$, since this holds for every test function ϕ on D. Since D is an arbitrary small disk on Λ_{θ_0}, $D_i (f) = 0$ as a distribution on Λ_0. By Weyl’s Lemma, then, f, restricted to Λ_{θ_0}, is holomorphic on Λ_{θ_0}.

Conversely, fix $f \in C(\Sigma_0)$ such that f restricted to Λ_θ is holomorphic on Λ_θ for each θ. We must show that $Xf = 0$ on U, where we write X for X_Σ.

Fix (z_0, w_0) in Σ_0. Thus $w_0 = z_0^\alpha \exp i\theta_0$, for some θ_0. We choose a branch of the function z^α and also fix $b > 0$, and form the set

$$U_b = \{(z, z^\alpha \exp i\theta)| |z - z_0| < b, |\theta - \theta_0| < b\}.$$

We claim that $D_i f = 0$ on U_b. Choose a test function ϕ on U_b. We define

$$I = \int_{U_b} f D_i \phi d\bar{\omega} d\theta = \langle D_i f, \phi \rangle.$$

We choose a sequence of smooth functions $\{f_n\}$ on U_b such that for each n the restriction of f_n to Λ_θ is holomorphic on Λ_θ for each θ in $[\theta_0 - b, \theta_0 + b]$ and f_n converges to f uniformly on U_b as $n \to \infty$ We fix n. Put

$$I_n = \int_{U_b} f_n D_i \phi d\bar{\omega} d\theta = - \int_{U_b} D_i f_n \phi d\bar{\omega} d\theta.$$
Since \(f_n \) is holomorphic on \(\Lambda_\theta \) for each \(\theta \), \(I_n \) vanishes. Letting \(n \to \infty \), we have \(I_n \to I \). So \(I = 0 \).

This holds for all test functions \(\phi \) on \(U_b \). So \(D_\ell f = 0 \) as a distribution on \(U_b \). Since \(Xf = ID_\ell f \) on \(U_b \), then \(Xf = 0 \) on \(U_b \). Since \((z_0, w_0) \) is an arbitrary point on \(\Sigma_0 \), \(Xf = 0 \) on \(\Sigma_0 \).

Theorem 2.1 is proved. We now proceed to the proof of Theorem 1.1.

Proof. For \(f \) in \(C(T^2) \), we put \(||f|| = \max |f| \), taken over \(T^2 \). We define \(\mathcal{A} = \{ f \in C(T^2) \} \) such that \(f \) has a continuous extension to \(\Sigma \), denoted \(F \), with \(XF = 0 \) on \(\Sigma_0 \), in the sense of distributions. Fix \(f \) in \(\mathcal{A} \). By Theorem 2.1, then, \(F \), restricted to \(\Lambda_\theta \), is holomorphic on \(\Lambda_\theta \) for each \(\theta \); i.e., \(F(\chi_\theta) \) is holomorphic on \(H^+ \), where \(\chi_\theta \) was defined above. Also, since \(F \) is continuous on the compact set \(\Sigma \), \(F(\chi_\theta) \) is bounded on \(H^+ \). Finally, for \(\zeta = it \), \(t \) real, where \(\chi_\theta(\zeta) = (\exp it, \exp i\theta \exp -i\alpha t) \in T^2 \), \(|F(\chi_\theta(\zeta))| \leq ||f|| \).

By the Phragmén-Lindelöf theorem, then, \(|F(\chi_\theta(\zeta))| \leq ||f|| \) for all \(\zeta \in H^+ \), so \(F \) can be holomorphic on \(\mathcal{A} \). Since \(\chi_\theta \) is bounded on \(\Sigma \), the functions in \(\mathcal{A} \), viewed on \(\Sigma \), satisfy the maximum principle relative to \(T^2 \). We note that \(\mathcal{A} \) is a linear space of functions.

Claim 2. \(\mathcal{A} \) is closed under uniform convergence on \(T^2 \).

Proof of Claim 2. Let \(\{f_n\} \) be a sequence of functions in \(\mathcal{A} \) which converges uniformly on \(T^2 \) to a function \(f \). Fix (\(z_0, w_0 \)) \(\in \Sigma \). For each of the indices \(n, m \), we have
\[
|F_n(z_0, w_0) - F_m(z_0, w_0)| \leq ||f_n - f_m||,
\]
since \(f_n - f_m \in \mathcal{A} \). Hence as \(n, m \) tend to \(\infty \), \(F_n \) converges uniformly on \(\Sigma \), to some continuous function \(F \), and \(F = f \) on \(T^2 \). Furthermore, for each of the Riemann surfaces \(\Lambda_\theta \), each \(F_n \) is holomorphic. Hence \(F \) is holomorphic on \(\Lambda_\theta \). By Theorem 2.1, then, \(F \) satisfies \(XF = 0 \) on \(\Sigma_0 \). So \(f \) again belongs to \(\mathcal{A} \). This was the claim. \(\square \)

Claim 3. \(\mathcal{A} \) is an algebra of functions on \(T^2 \).

Proof of Claim 3. Let \(f, g \in \mathcal{A} \), and let \(F, G \) be their corresponding extensions to \(\Sigma \). Since \(F \) and \(G \) are continuous on \(\Sigma \), so is \(FG \), and since \(F \) and \(G \) are each holomorphic on \(\Lambda_\theta \) for each \(\theta \), so is \(FG \). Hence by Theorem 2.1, \(X(FG) = 0 \) on \(\Sigma_0 \). Also \(FG \) is a continuous extension of \(fg \) from \(T^2 \) to \(\Sigma \). So \(fg \) lies in \(\mathcal{A} \). Claim 3 is proved. \(\square \)

Claim 4. \(\mathcal{A} \) contains \(A_\alpha \).

Proof of Claim 4. By Fejér’s theorem, \(A_\alpha \) is the closed span in \(C(T^2) \) of the set of functions \(\phi_{n,m} = \exp in\theta \exp im\phi, n + m\alpha > 0 \). Fix \(n, m \) with \(n + m\alpha > 0 \). We claim that \(\phi_{n,m} \) lies in \(\mathcal{A} \). With \(z, w \) the complex coordinates in \(C^2 \), we consider the extension \(z^n w^m \) of \(\phi_{n,m} \) to \(\Sigma \). The continuity is clear except at the origin. For \(z, w \in \Sigma_0 \),
\[
|z^n w^m| = |z|^n |w|^m = |z|^{n+m\alpha}.
\]
As \((z, w) \to (0, 0) \), this tends to 0. So \(z^n w^m \) provides a continuous extension of \(\phi_{n,m} \) to \(\Sigma \). Further, \(X(z^n w^m) = 0 \) on \(\Sigma_0 \), since \(z^n w^m \) extends to be holomorphic in a neighborhood of \(\Sigma_0 \) in \(C^2 \). So \(z^n w^m \) provides the desired extension of \(\phi_{n,m} \), and so \(\phi_{n,m} \in \mathcal{A} \). Since \(A_\alpha \) is the closed span of the \(\phi_{n,m} \) in \(C(T^2) \), \(A_\alpha \) is contained in \(\mathcal{A} \). Claim 4 is proved. \(\square \)
By Claims 1 and 2, we know that \mathcal{A} is closed under uniform convergence on T^2 and is an algebra of functions on T^2. By Claim 3, \mathcal{A} contains A_α. Theorem 2.3 in Chapter 7 of T.W. Gamelin’s book [2] gives that A_α is a maximal subalgebra of $C(T^2)$; i.e., no closed subalgebra of $C(T^2)$ lies properly between A_α and $C(T^2)$. So $A_\alpha = \mathcal{A}$. Theorem 1.1 is proved.

We proceed to the proof of Theorem 1.2.

Proof. We use the earlier notation.

Claim. There exist integers $p_j, q_j \in \mathbb{Z}^+$, $j = 1, 2, \ldots$, such that

1. $-p_j + \alpha q_j > 0$ for all j, and
2. $-p_j + \alpha q_j \to 0$, as $j \to \infty$.

Proof of Claim. A classical fact from the theory of continued fractions (see Hardy and Wright [3], Chapter X) gives the existence of a sequence of rational numbers $\frac{p_j}{q_j}$ such that

3. $|\alpha - \frac{p_j}{q_j}| < \frac{1}{q_j^2}$, $j = 1, 2, \ldots$ such that p_j and q_j are positive integers tending to ∞ as $j \to \infty$, and $\frac{p_j}{q_j} < \alpha$ for each j.

Thus for each j, we have $\alpha = \frac{p_j}{q_j} + \delta_j$, with $0 < \delta_j < \frac{1}{q_j}$. It follows that we have $-p_j + \alpha q_j = q_j \delta_j$. In view of the bound on δ_j, then, we have (1) and (2). So the Claim is proved.

Let $\{\epsilon_n\}$ be a sequence of real numbers tending to 0. Fix a point (z_0, θ_0) in Σ. We now define a sequence of bounded linear functionals L_n on A_α, as follows:

For f in A_α, and F denoting the extension of f to Σ, we put

$$L_n f = (\epsilon_n)^{-1}(F(z_0, \exp i\epsilon_n z_0^\alpha) - F(z_0, \theta_0)).$$

Let p_j, q_j be as in the Claim. Define $f_j = \exp -ip_j \theta \exp iq_j \theta$ on T^2. Since $-p_j + \alpha q_j > 0$, by (1), $f_j \in A_\alpha$. Further, for $(z, w) \in \Sigma, F_j(z, w) = z^{-p_j} w^{q_j}$. So

$$L_n f_j = (\epsilon_n^{-1})(z_0^{-p_j} \exp i\epsilon_n z_0^\alpha q_j - z_0^{-p_j} \exp i\epsilon_n \theta_0 q_j) = (\epsilon_n^{-1})(z_0^{-p_j} z_0^{q_j}(z_0^\alpha q_j) - \exp i\epsilon_n \theta_0 q_j - 1) = (z_0^{-p_j} z_0^{q_j})(\exp i\epsilon_n \theta_0 q_j - 1).$$

We now take $j = n$ and take absolute values. We get

$$|L_n(f_n)| = |(z_0^{-p_n + \alpha q_n})(\epsilon_n^{-1})(\exp i\epsilon_n \theta_0 q_n - 1)|.$$

We next take $\epsilon_n = \frac{z_0^\alpha}{q_n}$. This gives $|L_n(f_n)| = |z_0|^{-p_n + \alpha q_n}(\frac{z_0^\alpha}{q_n}) q_n$. Since $-p_n + \alpha q_n \to 0$ and $q_n \to \infty$ as $n \to \infty$, $|L_n(f_n)| \to \infty$ as n approaches ∞. Also, $||f_n|| = 1$ for each n. So the norm $||L_n||$, as a functional on A_α, becomes unbounded as n grows.

Next, we fix $f \in A_\alpha$ and the point $x_0 = (z_0, \theta_0)$. F denotes the extension of f to Σ. We put $\Psi(\theta) = F(z_0, \exp i\theta z_0^\alpha), -\pi \leq \theta \leq \pi$. Then

$$L_n f = (\epsilon_n^{-1})(F((z_0, \exp i\epsilon_n z_0^\alpha)) - F(z_0, \theta_0)) = (\epsilon_n^{-1})(\Psi(\epsilon_n) - \Psi(0)).$$

Suppose now that F is differentiable on Σ at x_0. Then Ψ is differentiable at $\theta = 0$. Hence by the preceding equality, the sequence $\{L_n(f)\}$ converges as n approaches ∞. Since L_n converges pointwise on the Banach space A_α, the uniform boundedness theorem yields that the sequence $\{L_n\}$ is bounded. This contradicts our earlier result. So for some $f \in A_\alpha, F$ fails to be differentiable at the given point. Theorem 1.2 is proved. \[\square\]
ACKNOWLEDGMENT

The author is grateful to J.J. Kohn for having remarked on some occasion, “People who study function algebras should look at the solution space of first order linear differential operators.” The above is one example where this paid off.

REFERENCES

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, 151 THAYER STREET, PROVIDENCE, RHODE ISLAND 02912
E-mail address: wermer@math.brown.edu