THE PINCHING CONSTANT OF MINIMAL HYPERSURFACES IN THE UNIT SPHERES

QIN ZHANG

(Communicated by Richard A. Wentworth)

ABSTRACT. In this paper, we prove that if \(M^n \) \((n \leq 8)\) is a closed minimal hypersurface in a unit sphere \(S^{n+1}(1) \), then there exists a positive constant \(\alpha(n) \) depending only on \(n \) such that if \(n \leq S \leq n + \alpha(n) \), then \(M^n \) is isometric to a Clifford torus, where \(S \) is the squared norm of the second fundamental form of \(M^n \).

1. Introduction

Let \(M^n \) be an \(n \)-dimensional closed minimal hypersurface in a unit sphere \(S^{n+1}(1) \) of dimension \(n + 1 \). Denote by \(S \) the squared norm of the second fundamental form of \(M^n \). Lawson \cite{L}, Simons \cite{Sim} and Chern, do Carmo, Kobayashi \cite{CK} obtained independently the famous rigidity theorem, which says that if \(S \leq n \), then \(S \equiv 0 \) or \(S \equiv n \); i.e., \(M^n \) is the great sphere \(S^n(1) \) or the Clifford torus. Further discussions in this direction have been carried out by many other authors \cite{P, T, C, C2, C3, C4, C5}. In \cite{P}, Peng and Terng proved that if the scalar curvature of \(M^n \) is constant, then there exists a positive constant \(\alpha(n) \) depending only on \(n \) such that if \(n \leq S \leq n + \alpha(n) \), then \(S \equiv n \). Later, Cheng and Yang \cite{CY} improved the pinching constant \(\alpha(n) \) to \(n/3 \). More generally, Peng and Terng \cite{PT} proved that if \(M^n(n \leq 5) \) is a closed minimal hypersurface in \(S^{n+1} \), then there exists a positive constant \(\alpha(n) \) depending only on \(n \) such that if \(n \leq S \leq n + \alpha(n) \), then \(S \equiv n \). So they proposed the following problem.

Let \(M^n \) \((n \geq 6)\) be a closed minimal hypersurface in \(S^{n+1} \). Does there exist a positive constant \(\alpha(n) \) depending only on \(n \) such that if \(n \leq S \leq n + \alpha(n) \), then \(S \equiv n \)?

In \cite{C}, Cheng gives a positive answer under the additional condition that \(M \) has only two distinct principal curvatures. Later, Cheng and Ishikawa \cite{CI} improved the result of Peng and Terng \cite{PT} when \(n \leq 5 \).

In this paper, we solve the problem proposed by Peng and Terng \cite{PT} for \(n \leq 8 \).

Theorem 1.1. Let \(M^n \) \((n \leq 8)\) be a closed minimal hypersurface in \(S^{n+1}(1) \). If \(n \leq S \leq n + \alpha(n) \), then \(S \equiv n \) and \(M^n \) is isometric to a Clifford torus \(S^m \left(\sqrt{\frac{m}{n}} \right) \times S^{n-m} \left(\sqrt{\frac{n-m}{n}} \right) \), where \(\alpha(n) = \frac{2(n+4)(3-n\delta)}{9n+30} \), \(\delta(3) = 0 \), \(\delta(4) = 0.16 \), \(\delta(5) = 0.23 \), \(\delta(6) = 0.28 \), \(\delta(7) = 0.32 \) and \(\delta(8) = 0.34 \).

Received by the editors June 7, 2009, and, in revised form, August 18, 2009.

2000 Mathematics Subject Classification. Primary 53C40.

Key words and phrases. Minimal hypersurface, Clifford torus, second fundamental form.
For $n \leq 5$, Cheng and Ishikawa [6] proved the following: Let M be an n-dimensional ($n \leq 5$) closed minimal hypersurface of a unit sphere $S^{n+1}(1)$. If $n \leq S \leq n + \alpha(n)$, where $\alpha(3) = \frac{42}{85}$, $\alpha(4) = \frac{8}{31}$ and $\alpha(5) = \frac{3(21 - 5\sqrt{17})}{28 + 3\sqrt{17}}$. It is obvious that our pinching constant is larger than theirs. Up to now, the open problem for $n \geq 9$ is still open and it is a very hard problem.

2. Fundamental formulas

Let M^n be an n-dimensional hypersurface in an $(n+1)$-dimensional unit sphere $S^{n+1}(1)$. We choose a local orthonormal frame field e_1, \cdots, e_{n+1} in $S^{n+1}(1)$, restricted to M^n, so that e_1, \cdots, e_n are tangent to M^n. Let $\omega_1, \cdots, \omega_{n+1}$ denote the dual coframe field in $S^{n+1}(1)$. Then in M^n, $\omega_{n+1} = 0$. It follows from Cartan’s Lemma that

$$\omega_{n+1} = \sum_j h_{ij} \omega_j.$$

The second fundamental form α and the mean curvature H of M^n are defined by

$$\alpha = \sum_{i,j} h_{ij} \omega_i \omega_j e_{n+1}, \quad nH = \sum_i h_{ii},$$

respectively. If M^n is a minimal hypersurface, then $\sum_i h_{ii} = 0$. The connection form ω_{ij} is characterized by the structure equations

$$d\omega_i + \sum_j \omega_{ij} \wedge \omega_j = 0, \quad \omega_{ij} + \omega_{ji} = 0,$$

$$d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj} = \Omega_{ij},$$

$$\Omega_{ij} = \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,$$

where Ω_{ij} (resp. R_{ijkl}) denotes the curvature form (resp. the components of the curvature tensor) of M^n. The Gauss equation is given by

$$R_{ijkl} = (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) + (h_{ik} h_{jl} - h_{il} h_{jk}).$$

Denote by h_{ijk}, h_{ijkl}, h_{ijklm} the components of the first, second and third covariant derivatives of the second fundamental form, respectively. Then

$$h_{ijk} = h_{ikj} = h_{jki},$$

$$h_{ijkl} - h_{ijlk} = \sum_m h_{ilm} R_{mjkl} + \sum_m h_{mj} R_{mikl},$$

$$h_{ijklm} - h_{ijlkm} = \sum_r h_{rjk} R_{rilm} + \sum_r h_{irk} R_{rjlm} + \sum_r h_{ijr} R_{rklm}.$$

For any fixed point p in M^n, we take a local orthonormal frame field e_1, \cdots, e_n such that

$$h_{ij} = \begin{cases}
\lambda_i, & i = j, \\
0, & i \neq j.
\end{cases}$$
Let $S := \sum_{i,j} h_{ij}^2 = \sum \lambda_i^2$. The following formulas can be obtained by a direct computation (cf. [7]):

\[(2.11) \quad \frac{1}{2} \Delta S = \sum_{i,j,k} h_{ijk}^2 - S(S - n),\]
\[(2.12) \quad \frac{1}{2} \sum_{i,j,k} h_{ijk}^2 = \sum_{i,j,k} h_{ijk}^2 + (2n + 3 - S) \sum_{i,j,k} h_{ijk}^2 + 3(2B - A) - \frac{3}{2} |\nabla S|^2,\]

where $A = \sum_{i,j,k} \lambda_i^2 h_{ijk}^2$, $B = \sum_{i,j,k} \lambda_i \lambda_j h_{ijk}^2$.

3. PROOF OF THEOREM 1.1

At first we give a proposition and some lemmas which will play a crucial role in the proof of our theorem. For convenience, we let

\[b_i = h_{ii}, b = \sum_{i \neq 1} b_i^2 + \frac{1}{3} b_1^2, f = \sum_{i \neq 1} (\lambda_i^2 - 4\lambda_1 \lambda_i) b_i^2 - \lambda_1^2 b_1^2.\]

Proposition 3.1. Let M^n be a closed minimal hypersurface in $S^{n+1}(1)$. Suppose that

\[3(A - 2B) \leq [2 + \delta(n)] \sum_{i,j,k} h_{ijk}^2,\]

where $\delta(n)$ is a number depending only on n such that $0 \leq \delta(n) < \min\{\frac{1}{2}, \frac{2}{n}\}$. Then there exists a positive constant $\alpha(n)$ depending only on n such that if $n \leq S \leq n + \alpha(n)$, then $S \equiv \alpha$; i.e., M^n is isometric to a Clifford torus $S^m(\sqrt{\frac{m}{n}}) \times S^{n-m}(\sqrt{\frac{n-m}{n}})$. Here, $\alpha(n) = \frac{2(n + 4)(3 - n\delta)}{9n + 30}$.

Proof. Since M^n is a minimal hypersurface in $S^{n+1}(1)$, from (2.11) and (2.12) we have

\[(3.1) \quad \int_M \sum_{i,j,k} h_{ijk}^2 dM = \int_M S(S - n) dM,\]
\[(3.2) \quad -\frac{1}{2} \int_M |\nabla S|^2 dM = \int_M \left[S \sum_{i,j,k} h_{ijk}^2 - S^2(S - n) \right] dM,\]
\[(3.3) \quad \int_M \sum_{i,j,k,l} h_{ijkl}^2 dM = \int_M \left[(S - 2n - 3) \sum_{i,j,k} h_{ijk}^2 + 3(A - 2B) + \frac{3}{2} |\nabla S|^2 \right] dM.\]

Letting $f_3 = \sum \lambda_i^2$ and $f_4 = \sum \lambda_i$, we have (cf. [6])

\[(3.4) \quad \sum_{i,j,k,l} h_{ijkl}^2 \geq \frac{3}{2} (Sf_4 - f_3^2 - 2S^2 + nS) + \frac{3S(S - n)^2}{2(n + 4)},\]
\[(3.5) \quad \int_M (A - 2B) dM = \int_M \left[Sf_4 - f_3^2 - S^2 - \frac{1}{4} |\nabla S|^2 \right] dM.\]

From (3.3), (3.4) and (3.5), we have

\[(3.6) \quad \int_M \left[(S - 2n - 3) \sum_{i,j,k} h_{ijk}^2 + \frac{3}{2} (A - 2B) + \frac{3}{2} S(S - n) + \frac{9}{8} |\nabla S|^2 - \frac{3S(S - n)^2}{2(n + 4)} \right] dM \geq 0.\]
Noticing that $S^2 = S(S - n) + nS$, from (3.1), (3.2) and (3.6), we have
\begin{equation}
\int_M \left[\frac{3}{2}(A - 2B) + \frac{9n + 30}{4(n + 4)} S(S - n)^2 - \left(\frac{5}{4} S - \frac{n}{4} + \frac{3}{2} \right) \sum_{i,j,k} h_{ijk}^2 \right] dM \geq 0.
\end{equation}

Suppose $3(A - 2B) \leq \left[2 + \delta(n) \right] S \sum_{i,j,k} h_{ijk}^2$ and $n \leq S \leq n + \alpha(n)$. From the above inequality, we have
\begin{equation}
\int_M \left\{ \frac{9n + 30}{4(n + 4)} \alpha(n) - \frac{1 - 2\delta(n)}{4} (S - n) - \frac{3 - n\delta(n)}{2} \right\} \sum_{i,j,k} h_{ijk}^2 dM \geq 0.
\end{equation}

Since $\alpha(n) = \frac{2(n + 4)(3 - n\delta)}{9n + 30}$ and $\delta(n) < \min \{ \frac{1}{2}, \frac{n}{4} \}$, we have
\begin{equation}
-\int_M (S - n) \sum_{i,j,k} h_{ijk}^2 dM \geq 0.
\end{equation}

Hence, $S \equiv n$. This completes the proof of Proposition 3.1. \qed

Lemma 3.2. Let M^n be a closed minimal hypersurface in $S^{n+1}(1)$. If $\lambda_1^2 - 4\lambda_1 \lambda_2 \geq tS$ ($t \geq 2$), then $(\lambda_1^2 - 4\lambda_1 \lambda_2) - (\lambda_2^2 - 4\lambda_1 \lambda_3) \geq rS$ ($i \neq 1, 2$). Here, $r = \frac{16t - 8 - 12\sqrt{2t^2 + 2t + 8}}{17}$.

Proof. Let $\lambda_1^2 = x^2 S, \lambda_2^2 = y^2 S$ ($x, y > 0$). Since $\lambda_1^2 - 4\lambda_1 \lambda_2 \geq tS$ ($t \geq 2$), we have $x^2 + 4xy \geq t$, that is, $y \geq \frac{t - x^2}{4x}$. Hence, we have
\[
\lambda_1^2 - 4\lambda_1 \lambda_i \leq \left(x^2 + 4x\sqrt{1 - x^2 - y^2} \right) S
\leq \left(x^2 + \sqrt{16x^2 - 16x^4 - (t - x^2)^2} \right) S
= \left(x^2 + \sqrt{-17x^4 + (16 + 2t)x^2 - t^2} \right) S.
\]

Let $g(z) = z + \sqrt{-17z^2 + (16 + 2t)z - t^2}$ ($0 < z < 1$). Then
\[
g'(z) = 1 - \frac{17z - (8 + t)}{\sqrt{-17z^2 + (16 + 2t)z - t^2}}.
\]

Letting $g'(z_0) = 0$, we have
\[
z_0 = \frac{3(8 + t) + 2\sqrt{-2t^2 + 2t + 8}}{51}.
\]

Hence we have
\[
g(z) \leq g(z_0) = \frac{t + 8 + 12\sqrt{-2t^2 + 2t + 8}}{17},
\]
which implies that
\[
\lambda_1^2 - 4\lambda_1 \lambda_2 \leq \frac{t + 8 + 12\sqrt{-2t^2 + 2t + 8}}{17}.
\]

Since $\lambda_1^2 - 4\lambda_1 \lambda_2 \geq tS$, we have
\[
(\lambda_1^2 - 4\lambda_1 \lambda_2) - (\lambda_2^2 - 4\lambda_1 \lambda_3) \geq \frac{16t - 8 - 12\sqrt{-2t^2 + 2t + 8}}{17}.
\]

This completes the proof of Lemma 3.2. \qed
Lemma 3.3. Let \(f_n(t) = 17[t - 2 - \delta(n)][3(n - 2)t + (n + 2)\delta(n) + 10 - 4n] \) and
\(g_n(t) = [8 + 16\delta(n)](4t - 2 - 3\sqrt{-2t^2 + 2t + 8}) \). Then
\(h_n(t) = f_n(t) - g_n(t) \leq 0 \quad (t \geq 2, 4 \leq n \leq 8). \)

Here, \(\delta(4) = 0.16, \delta(5) = 0.23, \delta(6) = 0.28, \delta(7) = 0.32 \) and \(\delta(8) = 0.34. \)

Proof. By a direct computation, we obtain
\[
h_n''(t) = 51\left(2(n - 2) - [8 + 16\delta(n)](-2t^2 + 2t + 8)^{-3/2}\right)
\] and
\[
h_n''(t) = -153[8 + 16\delta(n)](2t - 1)(-2t^2 + 2t + 8)^{-5/2} < 0 \quad (t \geq 2).
\]

On the other hand, \(h_n''(2) > 0 \) and \(h_n(2) < 0 \). Hence, if there exist real numbers \(t_i > 2 \) \((i = 1, 2) \) such that \(h_n'(t_1) > 0, h_n'(t_2) < 0 \) and \(h_n(t) \leq 0 \) \((t_1 \leq t \leq t_2) \), then
\(h_n(t) \leq 0 \) \((\forall t \geq 2) \).

In the case \(n = 4 \), since \(\delta(4) = 0.16 \), we have
\[
f_4(t) = 17(6t^2 - 18t + 10.8864),
\]
\[
g_4(t) = 10.56(4t - 2 - 3\sqrt{-2t^2 + 2t + 8}),
\]
\[
h_4'(t) = 204t - 348.24 - 31.68(2t - 1)(-2t^2 + 2t + 8)^{-5/2}.
\]

By a direct computation, we obtain
\((3.10) \quad h_4'(2.48) > 0, h_4'(2.5) < 0. \)

On the other hand, when \(2.48 \leq t \leq 2.5 \), we have
\[
f_4(t) \leq f_4(2.5) \leq 57.6, \quad g_4(t) \geq g_4(2.48) \geq 57.8.
\]

This implies that
\((3.11) \quad h_4(t) \leq 0 \quad (2.48 \leq t \leq 2.5). \)

From \((3.10) \) and \((3.11) \), we know that Lemma 3.3 is true in the case \(n = 4 \).

In the case \(n = 5 \), since \(\delta(5) = 0.23 \), we have
\[
f_5(t) = 17(9t^2 - 28.46t + 18.7097),
\]
\[
g_5(t) = 11.68(4t - 2 - 3\sqrt{-2t^2 + 2t + 8}),
\]
\[
h_5'(t) = 306t - 530.54 - 35.04(2t - 1)(-2t^2 + 2t + 8)^{-5/2}.
\]

By a direct computation, we obtain
\((3.12) \quad h_5'(2.51) > 0, h_5'(2.52) < 0. \)

On the other hand, when \(2.51 \leq t \leq 2.52 \), we have
\[
f_5(t) \leq f_5(2.52) \leq 70.5, \quad g_5(t) \geq g_5(2.51) \geq 71.
\]

This implies that
\((3.13) \quad h_5(t) \leq 0 \quad (2.51 \leq t \leq 2.52). \)

From \((3.12) \) and \((3.13) \), we know that Lemma 3.3 is true in the case \(n = 5 \).

In the case \(n = 6 \), since \(\delta(6) = 0.28 \), we have
\[
f_6(t) = 17(12t^2 - 39.12t + 26.8128),
\]
\[
g_6(t) = 12.48(4t - 2 - 3\sqrt{-2t^2 + 2t + 8}),
\]
\[
h_6'(t) = 408t - 714.96 - 37.44(2t - 1)(-2t^2 + 2t + 8)^{-5/2}.
\]
By a direct computation, we obtain
\begin{equation}
(3.14) \quad h'_6(2.53) > 0, \quad h'_6(2.535) < 0.
\end{equation}
On the other hand, when $2.53 \leq t \leq 2.535$, we have
\[f_6(t) \leq f_6(2.535) \leq 81, \quad g_6(t) \geq g_6(2.51) \geq 82. \]
This implies that
\begin{equation}
(3.15) \quad h_6(t) \leq 0 \quad (2.53 \leq t \leq 2.535).
\end{equation}
From (3.14) and (3.15), we know that Lemma 3.3 is true in the case $n = 6$.

In the case $n = 7$, since $\delta(7) = 0.32$, we have
\begin{align*}
 f_7(t) &= 17(15t^2 - 49.92t + 35.0784), \\
 g_7(t) &= 13.12(4t - 2 - 3\sqrt{-2t^2 + 2t + 8}), \\
 h'_7(t) &= 510t - 901.12 - 39.36(2t - 1)(-2t^2 + 2t + 8)^{-\frac{1}{2}}.
\end{align*}
By a direct computation, we obtain
\begin{equation}
(3.16) \quad h'_7(2.54) > 0, \quad h'_7(2.544) < 0.
\end{equation}
On the other hand, when $2.54 \leq t \leq 2.544$, we have
\[f_7(t) \leq f_7(2.544) \leq 88, \quad g_7(t) \geq g_7(2.54) \geq 90. \]
This implies that
\begin{equation}
(3.17) \quad h_7(t) \leq 0 \quad (2.54 \leq t \leq 2.544).
\end{equation}
From (3.16) and (3.17), we know that Lemma 3.3 is true in the case $n = 7$.

In the case $n = 8$, since $\delta(8) = 0.34$, we have
\begin{align*}
 f_8(t) &= 17(18t^2 - 60.72t + 43.524), \\
 g_8(t) &= 13.44(4t - 2 - 3\sqrt{-2t^2 + 2t + 8}), \\
 h'_8(t) &= 612t - 1086 - 40.32(2t - 1)(-2t^2 + 2t + 8)^{-\frac{1}{2}}.
\end{align*}
By a direct computation, we obtain
\begin{equation}
(3.18) \quad h'_8(2.5465) > 0, \quad h'_8(2.5468) < 0.
\end{equation}
On the other hand, when $2.5465 \leq t \leq 2.5468$, we have
\[f_8(t) \leq f_8(2.5468) \leq 95.78, \quad g_8(t) \geq g_8(2.5465) \geq 95.8. \]
This implies that
\begin{equation}
(3.19) \quad h_8(t) \leq 0 \quad (2.5465 \leq t \leq 2.5468).
\end{equation}
From (3.18) and (3.19), we know that Lemma 3.3 is true in the case $n = 8$. This completes the proof of Lemma 3.3. \hfill \Box

Lemma 3.4. Let M^n be a closed minimal hypersurface in $S^{n+1}(1)$. Then
\[f \leq [2 + \delta(n)]Sb, \quad 3 \leq n \leq 8. \]
Here, $\delta(3) = 0, \delta(4) = 0.16, \delta(5) = 0.23, \delta(6) = 0.28, \delta(7) = 0.32$ and $\delta(8) = 0.34$.
Proof. In the case $n = 3$, if $b_1 = 0$, then $b_2^2 = b_3^2 = \frac{1}{2} b$. Hence

$$f = \frac{1}{2}(\lambda_1^2 - 4\lambda_1 \lambda_2 + \lambda_2^2 - 4\lambda_1 \lambda_3)b$$

$$= \left\{ \lambda_1^2 - 2 \cdot \frac{\lambda_1}{\sqrt{2}} \cdot \sqrt{2}\lambda_2 - 2 \cdot \frac{\lambda_1}{\sqrt{2}} \cdot \sqrt{2}\lambda_3 \right\} b$$

$$\leq 2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)b \leq 2Sb.$$

When $b_1 \neq 0$, we let $b_2 = (x - \frac{1}{2})b_1$ and $\lambda_2 = (y - \frac{1}{2})\lambda_1$. Then

$$f = \frac{36x^2 + 48xy + 3}{48x^2y^2 + 36x^2 + 20y^2 + 15} \cdot 2Sb$$

$$= \frac{36x^2 + 48xy + 3}{36x^2 + 48xy + 3 + 48(xy - \frac{1}{2})^2 + 20y^2} \cdot 2Sb$$

$$\leq 2Sb.$$

From the above discussion, we know that Lemma 3.4 is true in the case $n = 3$.

In the case $4 \leq n \leq 8$, if $\lambda_1^2 - 4\lambda_1 \lambda_i \leq [2 + \delta(n)]S (\forall i \neq 1)$, then Lemma 3.4 is true. Otherwise, without loss of generality, we suppose that $\lambda_1^2 - 4\lambda_1 \lambda_2 = tS (t \geq 2)$ and $b_1 = xb_2$. Then

$$\sum_{i \neq 1, 2} b_i^2 \geq \frac{(1 + x)^2}{n - 2} b_3^2, \lambda_1^2 \geq (t - 2)S.$$

From the above inequalities and Lemma 3.2 we have

$$f - [2 + \delta(n)]Sb \leq \left[t - 2 - \delta(n) \right] Sb_3^2 + \left[t - r - 2 - \delta(n) \right] S \sum_{i \neq 1, 2} b_i^2$$

$$- \left(t - 2 + \frac{2 + \delta(n)}{3} \right) Sb_1^2$$

$$\leq \left[t - 2 - \delta(n) \right] Sb_2^2 + \frac{t - r - 2 - \delta(n)}{n - 2} (1 + x)^2 Sb_2^2$$

$$- \left(t - 2 + \frac{2 + \delta(n)}{3} \right) x^2 Sb_2^2.$$

Here, $r = \frac{16t - 8 - 12\sqrt{-2t^2 + 2t + 8}}{17}.$

Let $F(n, t, x) = t - 2 - \delta(n) + \frac{t - r - 2 - \delta(n)}{n - 2} (1 + x)^2 - \left(t - 2 + \frac{2 + \delta(n)}{3} \right) x^2$.

The above inequality becomes

$$F(n, t, x) \leq F(n, t, x) Sb_2^2.$$

Since

$$\frac{1}{2} \frac{\partial F(n, t, x)}{\partial x} = \frac{t - r - 2 - \delta(n)}{n - 2} (1 + x) - \left(t - 2 + \frac{2 + \delta(n)}{3} \right) x,$$

we have

$$F(n, t, x) \leq F(n, t, x_0)$$

$$= \frac{t - 2 - \delta(n)}{G} \left\{ \frac{(n - 2)t + (n + 2)\delta(n) + 10 - 4n}{3} \right\} - \frac{2 + 4\delta(n)}{3G} r.$$
Here, \(-x_0 = \frac{3[r + 2 + \delta(n) - t]}{3r + 3(n-3)t + 14 + (n+1)\delta(n) - 4n}\), \(\frac{\partial F(n, t, x_0)}{\partial x} = 0\), and \(G = r + 2 + \delta(n) - t + (n-2)\left(t - 2 + \frac{2 + \delta(n)}{3}\right)\).

Notice that \(h_n(t) = 51F(n, t, x_0)G\), where \(h_n(t)\) is defined as in Lemma 3.3. From (3.20), (3.21) and Lemma 3.3, we have

\[
f \leq [2 + \delta(n)]Sb.
\]

This completes the proof of Lemma 3.4. \(\square\)

Now we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. From Lemma 3.4, we have obtained

\[
f = \sum_{i \neq 1}(\lambda_1^2 - 4\lambda_1\lambda_i)h_{i11}^2 - \lambda_i^2h_{111}^2 \leq (2 + \delta)S\left(\sum_{i \neq 1}h_{i11}^2 + \frac{1}{3}h_{111}^2\right).
\]

In general,

\[
f_j = \sum_{i \neq j}(\lambda_j^2 - 4\lambda_i\lambda_j)h_{ijj}^2 - \lambda_j^2h_{jjj}^2 \leq (2 + \delta)S\left(\sum_{i \neq j}h_{ijj}^2 + \frac{1}{3}h_{jjj}^2\right), \forall j.
\]

Hence we get

\[
3(A - 2B) = \sum_{i \neq j \neq k \neq i}[2(\lambda_i^2 + \lambda_j^2 + \lambda_k^2) - (\lambda_i + \lambda_j + \lambda_k)^2]h_{ijk}^2
- 3 \sum_i \lambda_i^2h_{i11}^2 + 3 \sum_{i \neq j}(\lambda_j^2 - 4\lambda_i\lambda_j)h_{ijj}^2
\leq 2S \sum_{i \neq j}h_{jjj}^2 + 3 \sum_{i \neq j}[(\lambda_j^2 - 4\lambda_i\lambda_j)h_{ijj}^2 - \lambda_j^2h_{jjj}^2]
\leq (2 + \delta)S \left\{ \sum_{i \neq j}h_{ijj}^2 + 3 \sum_{i \neq j}h_{ijj}^2 + \sum_j h_{jjj}^2 \right\}
= (2 + \delta)S \sum_{i,j,k} h_{ijk}^2.
\]

Notice that \(\delta(3) = 0, \delta(4) = 0.16, \delta(5) = 0.23, \delta(6) = 0.28, \delta(7) = 0.32, \delta(8) = 0.34\) and \(\alpha(n) = \frac{2(n + 4)(3 - n\delta)}{9n + 30}\). We conclude from Proposition 3.1 that \(S \equiv n\). This completes the proof of Theorem 1.1. \(\square\)

References

15. Q. M. Cheng, *The rigidity of Clifford torus $S^1(\sqrt{\frac{1}{n}}) \times S^{n-1}(\sqrt{\frac{n-1}{n}})$*, Comment. Math. Helvetici, 71 (1996), 60–69. MR1371678 [97a:53094]

Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China

E-mail address: zhangdiligence@126.com