Reductions of ideals in local rings with finite residue fields
Authors:
William J. Heinzer, Louis J. Ratliff Jr. and David E. Rush
Journal:
Proc. Amer. Math. Soc. 138 (2010), 15691574
MSC (2000):
Primary 13A15, 13E05, 13H10
Published electronically:
January 8, 2010
MathSciNet review:
2587440
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a proper nonnilpotent ideal in a local (Noetherian) ring and let be a reduction of ; that is, and for some nonnegative integer . We prove that there exists a finite free local unramified extension ring of such that the ideal has a minimal reduction with the property that the number of elements in a minimal generating set of is equal to the analytic spread of and thus also equal to the analytic spread of .
 1.
Winfried
Bruns and Jürgen
Herzog, CohenMacaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
(95h:13020)
 2.
Catalin
Ciuperca, William
J. Heinzer, Louis
J. Ratliff Jr., and David
E. Rush, Projectively full ideals in Noetherian rings. II, J.
Algebra 305 (2006), no. 2, 974–992. MR 2266864
(2007m:13010), 10.1016/j.jalgebra.2006.06.028
 3.
William
J. Heinzer, Louis
J. Ratliff Jr., and David
E. Rush, Projectively full radical ideals in integral extension
rings, J. Algebra 317 (2007), no. 2,
833–850. MR 2362944
(2009b:13012), 10.1016/j.jalgebra.2007.08.013
 4.
W. J. Heinzer, L. J. Ratliff, Jr., and D. E. Rush, Bases of ideals and Rees valuation rings, J. Algebra 323 (2010), 839853.
 5.
Masayoshi
Nagata, Local rings, Interscience Tracts in Pure and Applied
Mathematics, No. 13, Interscience Publishers a division of John Wiley &
Sons New YorkLondon, 1962. MR 0155856
(27 #5790)
 6.
D.
G. Northcott and D.
Rees, Reductions of ideals in local rings, Proc. Cambridge
Philos. Soc. 50 (1954), 145–158. MR 0059889
(15,596a)
 7.
D.
G. Northcott and D.
Rees, A note on reductions of ideals with an application to the
generalized Hilbert function, Proc. Cambridge Philos. Soc.
50 (1954), 353–359. MR 0062115
(15,929e)
 8.
L.
J. Ratliff Jr., On quasiunmixed local domains, the altitude
formula, and the chain condition for prime ideals. I, Amer. J. Math.
91 (1969), 508–528. MR 0246867
(40 #136)
 9.
Craig
Huneke and Irena
Swanson, Integral closure of ideals, rings, and modules,
London Mathematical Society Lecture Note Series, vol. 336, Cambridge
University Press, Cambridge, 2006. MR 2266432
(2008m:13013)
 10.
Oscar
Zariski and Pierre
Samuel, Commutative algebra, Volume I, The University Series
in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New
Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
(19,833e)
 1.
 W. Bruns and J. Herzog, CohenMacaulay Rings, revised edition, Cambridge Univ. Press, Cambridge 1998. MR 1251956 (95h:13020)
 2.
 C. Ciuperca, W. J. Heinzer, L. J. Ratliff, Jr., and D. E. Rush, Projectively full ideals in Noetherian rings (II), J. Algebra 305 (2006), 974992. MR 2266864 (2007m:13010)
 3.
 W. J. Heinzer, L. J. Ratliff, Jr., and D. E. Rush, Projectively full radical ideals in integral extension rings, J. Algebra 317 (2007), 833850. MR 2362944 (2009b:13012)
 4.
 W. J. Heinzer, L. J. Ratliff, Jr., and D. E. Rush, Bases of ideals and Rees valuation rings, J. Algebra 323 (2010), 839853.
 5.
 M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962. MR 0155856 (27:5790)
 6.
 D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145158. MR 0059889 (15:596a)
 7.
 D. G. Northcott and D. Rees, A note on reductions of ideals with an application to the generalized Hilbert function, Proc. Cambridge Philos. Soc. 50 (1954), 353359. MR 0062115 (15:929e)
 8.
 L. J. Ratliff, Jr., On quasiunmixed local domains, the altitude formula, and the chain condition for prime ideals (I), Amer. J. Math. 91 (1969), 508528. MR 0246867 (40:136)
 9.
 I. Swanson and C. Huneke, Integral Closure of Ideals, Rings and Modules, Cambridge Univ. Press, Cambridge, 2006. MR 2266432 (2008m:13013)
 10.
 O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, D. Van Nostrand, Princeton, NJ, 1958. MR 0090581 (19:833e)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13A15,
13E05,
13H10
Retrieve articles in all journals
with MSC (2000):
13A15,
13E05,
13H10
Additional Information
William J. Heinzer
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 479071395
Email:
heinzer@math.purdue.edu
Louis J. Ratliff Jr.
Affiliation:
Department of Mathematics, University of California, Riverside, California 925210135
Email:
ratliff@math.ucr.edu
David E. Rush
Affiliation:
Department of Mathematics, University of California, Riverside, California 925210135
Email:
rush@math.ucr.edu
DOI:
http://dx.doi.org/10.1090/S0002993910100501
Keywords:
Minimal reduction,
analytic spread,
finite free local unramified extension,
Rees valuation rings,
projective equivalence of ideals
Received by editor(s):
February 13, 2009
Received by editor(s) in revised form:
May 26, 2009
Published electronically:
January 8, 2010
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2010
American Mathematical Society
