Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of steady stable solutions for the Ginzburg-Landau equation in a domain with nontrivial topology


Author: Norimichi Hirano
Journal: Proc. Amer. Math. Soc. 138 (2010), 1701-1710
MSC (2000): Primary 35J50, 35Q80
DOI: https://doi.org/10.1090/S0002-9939-10-10225-1
Published electronically: January 6, 2010
MathSciNet review: 2587455
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N\geq2$ and $ \Omega$ $ \subset\mathbb{R}^{N}$ be a bounded domain with boundary $ \partial\Omega$. Let $ \Gamma\subset\partial\Omega$ be closed. Our purpose in this paper is to consider the existence of stable solutions $ u\in H^{1}(\Omega,\mathcal{\mathbb{C}})$ of the Ginzburg-Landau equation

\begin{displaymath}\left\{ \begin{array}[c]{rlll} -\Delta u(x) & = & \lambda(w_{... ...\nu} & = & 0 & \qquad\qquad\text{on }\Gamma \end{array}\right. \end{displaymath}

where $ \lambda>0,$ $ w_{0}\in C^{2}(\overline{\Omega},\mathbb{\mathbb{R}^{+}})$ and $ g\in C^{2}(\partial\Omega\backslash\Gamma)$ such that $ \left\vert g(x)\right\vert =w_{0}(x)$ on $ \partial\Omega\backslash\Gamma$.


References [Enhancements On Off] (What's this?)

  • 1. E. Abrahams and T. Tsuneto, Time variation of the Ginzburg-Landau order parameter, Phys. Rev. 152 (1966), 416-432.
  • 2. F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and Their Applications, 13, Birkhäuser Boston, 1994. MR 1269538 (95c:58044)
  • 3. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981. MR 610244 (83j:35084)
  • 4. S.-T. Hu, Homotopy theory, Academic Press, New York-London, 1959. MR 0106454 (21:5186)
  • 5. S. Jimbo and Y. Morita, Stable solutions with zeros to the Ginzburg-Landau equation with Neumann boundary condition, J. Differential Equations 128 (1996), no. 2, 596-613. MR 1398333 (97f:35202)
  • 6. -, Ginzburg-Landau equation with magnetic effect in a thin domain, Calc. Var. Partial Differential Equations 15 (2002), no. 3, 325-352. MR 1938818 (2003i:35007)
  • 7. S. Jimbo, Y. Morita, and J. Zhai, Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2093-2112. MR 1361731 (97i:35167)
  • 8. S. Jimbo and J. Zhai, Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (1998), no. 3, 663-684. MR 1626354 (99m:35231)
  • 9. -, Domain perturbation method and local minimizers to Ginzburg-Landau functional with magnetic effect, Abstr. Appl. Anal. 5 (2000), no. 2, 101-112. MR 1885324 (2003e:35055)
  • 10. D. R. Nelson, Defect-mediated phase transitions, Phase transitions and critical phenomena, vol. 7, Academic Press, London, 1983. MR 794313
  • 11. A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969), 279-303.
  • 12. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), no. 3, 115-162. MR 0109940 (22:823)
  • 13. G. M. Troianiello, Elliptic differential equations and obstacle problems, Plenum Press, New York, 1987. MR 1094820 (92b:35004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J50, 35Q80

Retrieve articles in all journals with MSC (2000): 35J50, 35Q80


Additional Information

Norimichi Hirano
Affiliation: Department of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogayaku, Yokohama, Japan
Email: hirano@math.sci.ynu.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-10-10225-1
Keywords: Ginzburg-Landau equation, nontrivial topology of domain
Received by editor(s): June 28, 2009
Received by editor(s) in revised form: July 3, 2009, and August 20, 2009
Published electronically: January 6, 2010
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society