Nilpotent ideals in polynomial and power series rings
Authors:
Victor Camillo, Chan Yong Hong, Nam Kyun Kim, Yang Lee and Pace P. Nielsen
Journal:
Proc. Amer. Math. Soc. 138 (2010), 16071619
MSC (2000):
Primary 16N40; Secondary 16U80
Published electronically:
January 13, 2010
MathSciNet review:
2587445
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given a ring and polynomials satisfying , we prove that the ideal generated by products of the coefficients of and is nilpotent. This result is generalized, and many well known facts, along with new ones, concerning nilpotent polynomials and power series are obtained. We also classify which of the standard nilpotence properties on ideals pass to polynomial rings or from ideals in polynomial rings to ideals of coefficients in base rings. In particular, we prove that if is a left nilpotent ideal, then the ideal formed by the coefficients of polynomials in is also left nilpotent.
 1.
David
E. Fields, Zero divisors and nilpotent elements
in power series rings, Proc. Amer. Math.
Soc. 27 (1971),
427–433. MR 0271100
(42 #5983), http://dx.doi.org/10.1090/S00029939197102711006
 2.
B.
J. Gardner, Some aspects of 𝑇nilpotence, Pacific J.
Math. 53 (1974), 117–130. MR 0360667
(50 #13114)
 3.
B.
J. Gardner and R.
Wiegandt, Radical theory of rings, Monographs and Textbooks in
Pure and Applied Mathematics, vol. 261, Marcel Dekker, Inc., New York,
2004. MR
2015465 (2004m:16031)
 4.
Abraham
A. Klein, Rings of bounded index, Comm. Algebra
12 (1984), no. 12, 9–21. MR 732182
(85c:16016), http://dx.doi.org/10.1080/00927878408822986
 5.
Abraham
A. Klein, The sum of nil onesided ideals of bounded index of a
ring, Israel J. Math. 88 (1994), no. 13,
25–30. MR
1303489 (96b:16016), http://dx.doi.org/10.1007/BF02937505
 6.
T.
Y. Lam, A first course in noncommutative rings, 2nd ed.,
Graduate Texts in Mathematics, vol. 131, SpringerVerlag, New York,
2001. MR
1838439 (2002c:16001)
 7.
André
Leroy and Jerzy
Matczuk, Goldie conditions for Ore extensions over semiprime
rings, Algebr. Represent. Theory 8 (2005),
no. 5, 679–688. MR 2189578
(2006h:16048), http://dx.doi.org/10.1007/s104680050707y
 8.
E.
M. Patterson, On the radicals of rings of rowfinite matrices,
Proc. Roy. Soc. Edinburgh Sect. A 66 (1961/1962),
42–46. MR
0142582 (26 #151)
 9.
Edmund
R. Puczyłowski, Nil ideals of power series rings, J.
Austral. Math. Soc. Ser. A 34 (1983), no. 3,
287–292. MR
695913 (84d:16004)
 10.
E.
R. Puczyłowski and Agata
Smoktunowicz, The nil radical of power series rings, Israel J.
Math. 110 (1999), 317–324. MR 1750432
(2001e:16027), http://dx.doi.org/10.1007/BF02808186
 11.
N.
E. Sexauer and J.
E. Warnock, The radical of the rowfinite matrices
over an arbitrary ring, Trans. Amer. Math.
Soc. 139 (1969),
287–295. MR 0238889
(39 #249), http://dx.doi.org/10.1090/S00029947196902388899
 12.
Agata
Smoktunowicz, Amitsur’s conjecture on polynomial rings in
𝑛 commuting indeterminates, Math. Proc. R. Ir. Acad.
102A (2002), no. 2, 205–213. MR 1961638
(2004c:16046), http://dx.doi.org/10.3318/PRIA.2002.102.2.205
 13.
Agata
Smoktunowicz and E.
R. Puczyłowski, A polynomial ring that is Jacobson radical
and not nil, Israel J. Math. 124 (2001),
317–325. MR 1856524
(2002f:16049), http://dx.doi.org/10.1007/BF02772627
 14.
Julius
M. Zelmanowitz, Radical endomorphisms of decomposable modules,
J. Algebra 279 (2004), no. 1, 135–146. MR 2078391
(2005e:16051), http://dx.doi.org/10.1016/j.jalgebra.2004.04.004
 1.
 D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427433. MR 0271100 (42:5983)
 2.
 B. J. Gardner, Some aspects of nilpotence, Pacific J. Math. 53 (1974), 117130. MR 0360667 (50:13114)
 3.
 B. J. Gardner and R. Wiegandt, Radical theory of rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 261, Marcel Dekker Inc., New York, 2004. MR 2015465 (2004m:16031)
 4.
 A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 12, 921. MR 732182 (85c:16016)
 5.
 , The sum of nil onesided ideals of bounded index of a ring, Israel J. Math. 88 (1994), no. 13, 2530. MR 1303489 (96b:16016)
 6.
 T. Y. Lam, A first course in noncommutative rings, second ed., Graduate Texts in Mathematics, vol. 131, SpringerVerlag, New York, 2001. MR 1838439 (2002c:16001)
 7.
 A. Leroy and J. Matczuk, Goldie conditions for Ore extensions over semiprime rings, Algebr. Represent. Theory 8 (2005), no. 5, 679688. MR 2189578 (2006h:16048)
 8.
 E. M. Patterson, On the radicals of rings of rowfinite matrices, Proc. Roy. Soc. Edinburgh Sect. A 66 (1961/1962), 4246. MR 0142582 (26:151)
 9.
 E. R. Puczyłowski, Nil ideals of power series rings, J. Austral. Math. Soc. Ser. A 34 (1983), no. 3, 287292. MR 695913 (84d:16004)
 10.
 E. R. Puczyłowski and A. Smoktunowicz, The nil radical of power series rings, Israel J. Math. 110 (1999), 317324. MR 1750432 (2001e:16027)
 11.
 N. E. Sexauer and J. E. Warnock, The radical of the rowfinite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1969), 287295. MR 0238889 (39:249)
 12.
 A. Smoktunowicz, Amitsur's conjecture on polynomial rings in commuting indeterminates, Math. Proc. R. Ir. Acad. 102A (2002), no. 2, 205213. MR 1961638 (2004c:16046)
 13.
 A. Smoktunowicz and E. R. Puczyłowski, A polynomial ring that is Jacobson radical and not nil, Israel J. Math. 124 (2001), 317325. MR 1856524 (2002f:16049)
 14.
 J. M. Zelmanowitz, Radical endomorphisms of decomposable modules, J. Algebra 279 (2004), no. 1, 135146. MR 2078391 (2005e:16051)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
16N40,
16U80
Retrieve articles in all journals
with MSC (2000):
16N40,
16U80
Additional Information
Victor Camillo
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email:
camillo@math.uiowa.edu
Chan Yong Hong
Affiliation:
Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 131701, Republic of Korea
Email:
hcy@khu.ac.kr
Nam Kyun Kim
Affiliation:
College of Liberal Arts, Hanbat National University, Daejon 305719, Republic of Korea
Email:
nkkim@hanbat.ac.kr
Yang Lee
Affiliation:
Department of Mathematics Education, Pusan National University, Pusan 609735, Republic of Korea
Email:
ylee@pusan.ac.kr
Pace P. Nielsen
Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email:
pace@math.byu.edu
DOI:
http://dx.doi.org/10.1090/S0002993910102524
PII:
S 00029939(10)102524
Keywords:
Bounded index of nilpotence,
left $T$nilpotent,
locally nilpotent,
nil,
nilpotent,
polynomial ring,
power series ring
Received by editor(s):
June 9, 2009
Received by editor(s) in revised form:
September 15, 2009
Published electronically:
January 13, 2010
Communicated by:
Birge HuisgenZimmermann
Article copyright:
© Copyright 2010
By the authors
