Algebraic approximation of germs of real analytic sets
Authors:
M. Ferrarotti, E. Fortuna and L. Wilson
Journal:
Proc. Amer. Math. Soc. 138 (2010), 15371548
MSC (2000):
Primary 14P15, 32B20, 32S05
Published electronically:
January 19, 2010
MathSciNet review:
2587437
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Two subanalytic subsets of are equivalent at a common point, say , if the Hausdorff distance between their intersections with the sphere centered at of radius goes to zero faster than . In the present paper we investigate the existence of an algebraic representative in every equivalence class of subanalytic sets. First we prove that such a result holds for the zeroset of an analytic map when the regular points of are dense in . Moreover we present some results concerning the algebraic approximation of the image of a real analytic map under the hypothesis that .
 [Ab]
Shreeram
Abhyankar, On the ramification of algebraic functions, Amer.
J. Math. 77 (1955), 575–592. MR 0071851
(17,193c)
 [Ar]
Fuensanta
Aroca, Puiseux parametric equations of
analytic sets, Proc. Amer. Math. Soc.
132 (2004), no. 10, 3035–3045 (electronic). MR 2063125
(2005c:32032), http://dx.doi.org/10.1090/S000299390407337X
 [BM]
Edward
Bierstone and Pierre
D. Milman, Semianalytic and subanalytic sets, Inst. Hautes
Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
(89k:32011)
 [B1]
Marcin
Bilski, Approximation of analytic sets by Nash tangents of higher
order, Math. Z. 256 (2007), no. 4,
705–716. MR 2308884
(2008h:32009), http://dx.doi.org/10.1007/s0020900600912
 [B2]
M. BILSKI: Approximation of analytic sets with proper projection by algebraic sets. arXiv:0905.1881v1[math.CV] (2009).
 [FFW]
Massimo
Ferrarotti, Elisabetta
Fortuna, and Les
Wilson, Local approximation of semialgebraic sets, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 1,
1–11. MR
1994799 (2004f:14083)
 [H]
Heisuke
Hironaka, Stratification and flatness, Real and complex
singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo,
1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977,
pp. 199–265. MR 0499286
(58 #17187)
 [KR]
K.
Kurdyka and G.
Raby, Densité des ensembles sousanalytiques, Ann.
Inst. Fourier (Grenoble) 39 (1989), no. 3,
753–771 (French, with English summary). MR 1030848
(90k:32026)
 [M]
John
Milnor, Singular points of complex hypersurfaces, Annals of
Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1968. MR 0239612
(39 #969)
 [TW]
David
J. A. Trotman and Leslie
C. Wilson, Stratifications and finite determinacy, Proc.
London Math. Soc. (3) 78 (1999), no. 2,
334–368. MR 1665246
(2000h:58069), http://dx.doi.org/10.1112/S0024611599001732
 [Ab]
 S. ABHYANKAR: On the ramification of algebraic functions. Amer. J. Math., vol. 77 (1955), pp. 575592. MR 0071851 (17:193c)
 [Ar]
 F. AROCA: Puiseux parametric equations of analytic sets. Proc. Amer. Math. Soc., vol. 132, n. 10 (2004), pp. 30353045 (electronic). MR 2063125 (2005c:32032)
 [BM]
 E. BIERSTONE, P. MILMAN: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math., vol. 67 (1988), pp. 542. MR 972342 (89k:32011)
 [B1]
 M. BILSKI: Approximation of analytic sets by Nash tangents of higher order. Math. Z., vol. 256, n. 4 (2007), pp. 705716. MR 2308884 (2008h:32009)
 [B2]
 M. BILSKI: Approximation of analytic sets with proper projection by algebraic sets. arXiv:0905.1881v1[math.CV] (2009).
 [FFW]
 M. FERRAROTTI, E. FORTUNA AND L. WILSON: Local approximation of semialgebraic sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), vol. I, n. 1 (2002), pp. 111. MR 1994799 (2004f:14083)
 [H]
 H. HIRONAKA: Stratification and flatness. In: Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199265. MR 0499286 (58:17187)
 [KR]
 K. KURDYKA, G. RABY: Densité des ensembles sousanalytiques. Ann. Inst. Fourier (Grenoble), vol. 39 (1989), pp. 753771. MR 1030848 (90k:32026)
 [M]
 J. MILNOR: Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612 (39:969)
 [TW]
 D. TROTMAN, L. WILSON: Stratifications and finite determinacy. Proc. London Math. Soc. (3), vol. 78, n. 2 (1999), pp. 334368. MR 1665246 (2000h:58069)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
14P15,
32B20,
32S05
Retrieve articles in all journals
with MSC (2000):
14P15,
32B20,
32S05
Additional Information
M. Ferrarotti
Affiliation:
Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I10129 Torino, Italy
Email:
ferrarotti@polito.it
E. Fortuna
Affiliation:
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I56127 Pisa, Italy
Email:
fortuna@dm.unipi.it
L. Wilson
Affiliation:
Department of Mathematics, University of Hawaii, Manoa, Honolulu, Hawaii 96822
Email:
les@math.hawaii.edu
DOI:
http://dx.doi.org/10.1090/S0002993910102834
PII:
S 00029939(10)102834
Received by editor(s):
January 9, 2009
Published electronically:
January 19, 2010
Additional Notes:
This research was partially supported by M.I.U.R. and by G.N.S.A.G.A
Communicated by:
Daniel Ruberman
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
