Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fibrations and Stein neighborhoods


Authors: Franc Forstneric and Erlend Fornæss Wold
Journal: Proc. Amer. Math. Soc. 138 (2010), 2037-2042
MSC (2010): Primary 32E05, 32E10, 32H02, 32V40
DOI: https://doi.org/10.1090/S0002-9939-09-10223-X
Published electronically: December 8, 2009
MathSciNet review: 2596039
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Z$ be a complex space and let $ S$ be a compact set in $ \mathbb{C}^n \times Z$ which is fibered over $ \mathbb{R}^n$. We give a necessary and sufficient condition for $ S$ to be a Stein compactum.


References [Enhancements On Off] (What's this?)

  • 1. Bedford, E., Fornæss, J. E., Domains with pseudoconvex neighborhood systems. Invent. Math., 47 (1978), 1-27. MR 0499316 (58:17215)
  • 2. Colţoiu, M., Complete locally pluripolar sets. J. Reine Angew. Math., 412 (1990), 108-112. MR 1074376 (91h:32010)
  • 3. Demailly, J.-P., Cohomology of $ q$-convex spaces in top degrees. Math. Z., 204 (1990), 283-295. MR 1055992 (91e:32014)
  • 4. Diederich, K., Fornæss, J.-E., Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann., 225 (1977), 275-292. MR 0430315 (55:3320)
  • 5. Forstnerič, F., Interpolation by holomorphic automorphisms and embeddings in $ \mathbb{C}^n$. J. Geom. Anal., 9 (1999), 93-118. MR 1760722 (2001g:32040)
  • 6. Forstnerič, F., Extending holomorphic mappings from subvarieties in Stein manifolds. Ann. Inst. Fourier, 55 (2005), 733-751. MR 2149401 (2006c:32012)
  • 7. Forstnerič, F., The Oka principle for sections of stratified fiber bundles. Pure Appl. Math. Quarterly (special issue in honor of Joseph J. Kohn), 6 (2010), no. 3, 843-874.
  • 8. Forstnerič, F., Oka manifolds. C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 1017-1020.
  • 9. Forstnerič, F., Laurent-Thiébaut, C., Stein compacts in Levi-flat hypersurfaces. Trans. Amer. Math. Soc., 360 (2008), no. 1, 307-329. MR 2342004 (2008i:32055)
  • 10. Gunning, R. C., Rossi, H., Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965. MR 0180696 (31:4927)
  • 11. Hörmander, L., An Introduction to Complex Analysis in Several Variables. Third ed., North-Holland, Amsterdam, 1990. MR 1045639 (91a:32001)
  • 12. Manne, P. E., Wold, E. F., Øvrelid, N., Carleman approximation by entire functions on Stein manifolds. Preprint, University of Oslo (2008).
  • 13. Narasimhan, R., The Levi problem for complex spaces. Math. Ann., 142 (1961), 355-365. MR 0148943 (26:6439)
  • 14. Scheinberg, S., Uniform approximation by entire functions. J. Analyse. Math., 29 (1976), 16-18. MR 0508100 (58:22664)
  • 15. Siu, J.-T., Every Stein subvariety admits a Stein neighborhood. Invent. Math., 38 (1976), 89-100. MR 0435447 (55:8407)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32E05, 32E10, 32H02, 32V40

Retrieve articles in all journals with MSC (2010): 32E05, 32E10, 32H02, 32V40


Additional Information

Franc Forstneric
Affiliation: Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
Email: franc.forstneric@fmf.uni-lj.si

Erlend Fornæss Wold
Affiliation: Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
Email: erlendfw@math.uio.no

DOI: https://doi.org/10.1090/S0002-9939-09-10223-X
Keywords: Stein manifold, Stein compactum, holomorphic convexity
Received by editor(s): June 12, 2009
Received by editor(s) in revised form: September 12, 2009
Published electronically: December 8, 2009
Additional Notes: The first author was supported by grants P1-0291 and J1-6173, Republic of Slovenia.
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society