ON ADDITIVE COMPLEMENTS

JIN-HUI FANG AND YONG-GAO CHEN

 Communicated by Wen-Ching Winnie Li

Abstract. Two infinite sequences A and B of non-negative integers are called additive complements if their sum contains all sufficiently large integers. Let $A(x)$ and $B(x)$ be the counting functions of A and B. For additive complements A and B, Sárközy and Szemerédi proved that if $\limsup_{x \to \infty} \frac{A(x)B(x)}{x^2} \leq 1$, then $A(x)B(x) - x \to +\infty$. In this paper, we prove that for additive complements A and B, if $\limsup_{x \to \infty} \frac{A(x)B(x)}{x^2} < \frac{5}{4}$ or $\limsup_{x \to \infty} \frac{A(x)B(x)}{x^2} > 2$, then $A(x)B(x) - x \to +\infty$.

1. Introduction

Two infinite sequences A and B of non-negative integers are called additive complements if their sum contains all sufficiently large integers. Let $A(x)$ and $B(x)$ be the counting functions of A and B, namely,

$$A(x) = \sum_{a \leq x \atop a \in A} 1 \quad \text{and} \quad B(x) = \sum_{b \leq x \atop b \in B} 1.$$

Motivated by a problem of Hanani and Erdős [2], [3], Danzer [1] conjectured that for additive complements A and B, if

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} \leq 1,$$

then

(1) $A(x)B(x) - x \to +\infty$ as $x \to +\infty$.

(See also [4, p. 10], [5, p. 75] and [6].) In [8], Sárközy and Szemerédi proved this conjecture.

In this paper, we prove the following result.

Theorem. For additive complements A and B, if

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} > 2$$

Received by the editors July 1, 2009, and, in revised form, September 10, 2009.

2010 Mathematics Subject Classification. Primary 11B13, 11B34.

Key words and phrases. Additive complements, sequences, counting functions.

This work was supported by the National Natural Science Foundation of China, Grant No. 10771103 and the Outstanding Graduate Dissertation Program of Nanjing Normal University, Grant No. 181200000213.

©2010 American Mathematical Society
Reverts to public domain 28 years from publication

1923
or

\[
\limsup_{x \to \infty} \frac{A(x)B(x)}{x} < \frac{5}{4},
\]

then (1) must hold.

For the construction of additive complements \(A \) and \(B \) with \(A(x)B(x) \sim x \) one may refer to [1] and [7].

2. Proof of the Theorem

Let \(f(n) \) be the number of solutions of \(a + b = n \), for \(a \in A, b \in B \). For additive complements \(A \) and \(B \), there exists a constant \(n_0 \) such that

\[
f(n) \geq 1 \quad \text{for} \quad n > n_0.
\]

Hence \(A(x)B(x) \geq [x] - n_0 \).

If (1) does not hold, then \(-\infty < \liminf_{x \to \infty} (A(x)B(x) - x) < +\infty\). Assume that

\[
\liminf_{x \to \infty} (A(x)B(x) - x) = L.
\]

By the same arguments as in Sárközy and Szemerédi [8, p. 238], there exists an integer \(n_1 \) with

\[
f(n) \equiv 1 \quad \text{for} \quad n \geq n_1.
\]

Then

\[
A(x)B(x) \leq \sum_{n \leq 2x} f(n) \leq \sum_{n \leq n_1} f(n) + (2x - n_1) = 2x + O(1).
\]

Hence

\[
\limsup_{x \to \infty} \frac{A(x)B(x)}{x} \leq 2.
\]

Thus, if

\[
\limsup_{x \to \infty} \frac{A(x)B(x)}{x} > 2,
\]

then

\[
\liminf_{x \to \infty} (A(x)B(x) - x) = +\infty.
\]

Now we assume that the additive complements \(A \) and \(B \) satisfy

\[
\limsup_{x \to \infty} \frac{A(x)B(x)}{x} = M.
\]

Then \(A(x)B(x) \leq x(M + o(1)) \). Since \(A \) and \(B \) are infinite, we have \(A(x) = o(x) \) and \(B(x) = o(x) \).

Let \(x_1 < x_2 < \cdots \) be all positive integers with \(A(x_k)B(x_k) - x_k = L, b^{(k)} \) be the largest integer in \((A \cup B) \cap [0, x_k] \) and \(y_k = x_k - b^{(k)} \). By the same discussion as in [8], we know that \(y_k \to +\infty \). Since

\[
x_k + L = A(x_k)B(x_k) = A(b^{(k)})B(b^{(k)})
\]

\[
= A(x_k - y_k)B(x_k - y_k) \leq (M + o_k(1))(x_k - y_k),
\]

we have

\[
y_k \leq (1 - \frac{1}{M})x_k + o_k(x_k).
\]

As in [8] we know that

\[
A(x_k) - A(y_k) \leq L + n_0
\]
and

\[A(x_k) - A(2y_k) = 0, \quad k \geq k_0. \]

Define \(D, D_1, D_1^+ \) and \(D_1^- \) in the same way as in \(S \), namely,
\[
D = \{(b, a) : b \in B, a \in A, b \leq x_k - y_k, a \leq x_k - y_k, b - a > y_k\},
\]
\[
D_1 = \{(b, a) : b \in B, a \in A, 2y_k < b \leq x_k - y_k, b - a > y_k\},
\]
\[
D_1^+ = \{(b, a) : b \in B, a \in A, 2y_k < b \leq x_k - y_k, a \leq 2y_k\},
\]
\[
D_1^- = \{(b, a) : b \in B, a \in A, 2y_k < b \leq x_k - y_k, a \geq b - y_k\}.
\]

By \(A(x_k) = A(2y_k) \) for \(k \geq k_0 \), we have \(|D_1| = |D_1^+| - |D_1^-| \). As in \(S \), it suffices to show that for large \(k \), \(|D| > x_k - 2y_k \).

Fix an integer \(t \) with
\[t > \frac{1}{2} - M. \]

Let
\[\alpha_i = 1 + \frac{i - 1}{t} \quad (1 \leq i \leq t + 1) \]
and
\[A(\alpha_i y_k)B(\alpha_i y_k) = M_i \alpha_i y_k. \]

Obviously, \(1 - \alpha_i, i(1) \leq M_i \leq M + \alpha_i, i(1) \). For \(D_1^+ \) we have
\[
|D_1^+| = (B(x_k - y_k) - B(2y_k))A(2y_k) - B(2y_k)A(2y_k)
= B(x_k)A(x_k) - B(2y_k)A(2y_k) = (x_k + O_k(1)) - 2M_{t+1}y_k.
\]

For \(D_1^- \), as in \(S \) we have \(|D_1^-| = o(y_k) \). Hence
\[
|D_1| = x_k - 2M_{t+1}y_k + o(y_k).
\]

We redefine \(D_2 \) as
\[
D_2 = \{(b, a) : b \in B, a \in A, b \leq 2y_k, b - a > y_k\}.
\]

Obviously, \(D_1 \cap D_2 = \emptyset \) and \(D = D_1 \cup D_2 \). Hence \(|D| = |D_1| + |D_2| \).

Now we are going to estimate \(|D_2| \). It follows from the definition of \(D_2 \) that
\[
|D_2| = \sum_{y_k < b \leq 2y_k} \sum_{1 \leq i \leq t} \sum_{\alpha_i y_k < b \leq \alpha_{i+1} y_k} A(b - y_k)
\geq \sum_{i=1}^t A(\alpha_i - 1)y_k)(B(\alpha_{i+1} y_k) - B(\alpha_i y_k)).
\]

Since
\[
A(\alpha_i - 1)y_k \geq \frac{A(\alpha_i - 1)y_k B(\alpha_i - 1)y_k}{A(y_k) B(y_k)} A(y_k) \geq \frac{\alpha_i - 1}{M} - o_k(1) A(y_k)
\]

and
\[
B(\alpha_{i+1} y_k) - B(\alpha_i y_k) = \frac{B(\alpha_{i+1} y_k) A(y_k) - B(\alpha_i y_k) A(y_k)}{A(y_k)}
= \frac{B(\alpha_{i+1} y_k)(A(\alpha_{i+1} y_k) + O_k(1)) - B(\alpha_i y_k)(A(\alpha_i y_k) + O_k(1))}{A(y_k)}
= \frac{M_{i+1} \alpha_{i+1} - M_i \alpha_i + o_k(1)}{A(y_k)} y_k.
\]
we have

\[|D_2| \geq \sum_{i=1}^{t} \left(\frac{\alpha_i - 1}{M} (M_{i+1} \alpha_{i+1} - M_i \alpha_i) \right) y_k + o_t(y_k) \]

\[= \frac{1}{M} \left(- \sum_{i=2}^{t+1} M_i \alpha_i (\alpha_i - \alpha_{i-1}) + M_{i+1} \alpha_{i+1} (\alpha_{i+1} - 1) \right) y_k + o_t(y_k) \]

\[\geq \frac{1}{M} \left(-(M + o_t(1)) \sum_{i=2}^{t+1} \alpha_i (\alpha_i - \alpha_{i-1}) + 2M_{t+1} \right) y_k + o_t(y_k) \]

\[= \frac{1}{M} \left(-\frac{3}{2} M + 2M_{t+1} - \frac{M}{2t} \right) y_k + o_t(y_k). \]

Thus by \(t > \frac{1}{M} \) we have

\[|D| \geq x_k + \left(-2M_{t+1} - \frac{3}{2} + \frac{2M_{t+1}}{M} - \frac{1}{2t} \right) y_k + o_t(y_k) \]

\[\geq x_k + \left(-2M_{t+1} (1 - \frac{1}{M}) - \frac{3}{2} - \frac{1}{2t} \right) y_k + o_t(y_k) \]

\[\geq x_k + \left(-2(M + o_t(1)) (1 - \frac{1}{M}) - \frac{3}{2} - \frac{1}{2t} \right) y_k + o_t(y_k) \]

\[\geq x_k + \left(-2M + 1 - \frac{1}{2t} \right) y_k + o_t(y_k) > x_k - 2y_k, \quad k > k_1. \]

By the same discussion as in [5], we obtain a contradiction, which completes the proof of the theorem.

ACKNOWLEDGEMENT

We would like to thank the referee for his/her kind comments.

REFERENCES

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, People’s Republic of China
E-mail address: fangjinhu1114@163.com

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, People’s Republic of China
E-mail address: ygchen@njnu.edu.cn